期刊文献+
共找到6,276篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of lanthanum on microstructure of a nickel-based single crystal superalloy
1
作者 Hong Gao Kai Guan +3 位作者 Ren-jie Cui Jian-chao Qin Zi-han Zhao Zhao-hui Huang 《China Foundry》 2025年第1期55-64,共10页
To enhance the high-temperature oxidation resistance and mechanical properties of a secondgeneration nickel-based superalloy,various concentrations of lanthanum(La)ranging from 5.0×10^(-5)wt.%to 3.4×10^(-4)w... To enhance the high-temperature oxidation resistance and mechanical properties of a secondgeneration nickel-based superalloy,various concentrations of lanthanum(La)ranging from 5.0×10^(-5)wt.%to 3.4×10^(-4)wt.%are added to the alloy.The microstructure of the nickel-based single crystal superalloy with trace of La was examined by means of SEM,EDS and TEM.Results show the addition of La decreases the segregation of elements and increases the amount ofγ/γ′eutectics of the as-cast alloy,and in the interdendritic region,the growth of eutectics is accompanied by the growth of strip clusters composed of Ni_(5)La and Ni_(3)Ta.As the La content in the alloy increases,the proportion of Ni_(5)La in the cluster increases.After heat treatment,incipient melting occurs in the cluster regions,leading to an increase in microporosity compared to the original as-cast samples.Furthermore,the heat treatment alters the shape of the clusters from a strip morphology to an elliptical one,and it changes their composition from Ni_(5)La and Ni_(3)Ta to a combination of Ni_(5)La,Ni_(3)Ta,and MC carbides. 展开更多
关键词 single crystal superalloy LANTHANUM MICROSTRUCTURE heat-treatment precipitate phase
下载PDF
Laser Powder Deposition of a Fe-Ni-Cr Superalloy:Analysis of Microstructure Formation and Mechanical Properties
2
作者 Huang Jian,Nie Pulin,Zhang Yaocheng,Liu Honggang,Li Zhuguo,Wu Yixiong Shanghai Key Laboratory of Materials Laser Processing and Modification,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S4期283-287,共5页
Laser powder deposition (LPD) is a very promising repair technique for gas turbine components,which injects the melted powder into the surface of the part and forms the clad with designed geometry.In this paper Fe-Ni-... Laser powder deposition (LPD) is a very promising repair technique for gas turbine components,which injects the melted powder into the surface of the part and forms the clad with designed geometry.In this paper Fe-Ni-Cr powder is deposited by LPD,and heat treatment is subsequently employed for optimizing the microstructure and improving the mechanical properties of the as-deposited clad.The microstructure of the as-deposited clad consists of Nb bearing Laves phase and γ austenite matrix.Strengthening phase γ'' can be precipitated by post heat treatment for increasing the mechanical properties.But the existence of Laves phase weakens the mechanical properties of the clad,even inducing the hot cracking.Unfortunately,DTA results show liquation reaction of Laves phase is as high as 1141 ℃.The solution treatment under 980 ℃ hardly dissolves the Laves phase.It is needed to control the precipitation of Laves phase by further work. 展开更多
关键词 fe-ni-cr superalloy laser POWDER DEPOSITION (LPD) strengthening PHASE Laves PHASE
原文传递
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:4
3
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
A review of linear friction welding of Ni -based superalloys 被引量:2
4
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 Ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties 被引量:2
5
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
6
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Effect of Ti and Ta content on the oxidation resistance of Co-Ni-based superalloys 被引量:1
7
作者 Yuheng Zhang Zixin Li +2 位作者 Yunwei Gui Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期351-361,共11页
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s... Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form. 展开更多
关键词 Co-Ni-based superalloys high-temperature oxidation Ti and Ta elements formation mechanism of holes
下载PDF
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
8
作者 Xiaorui Zhang Min Zou +3 位作者 Song Lu Longfei Li Xiaoli Zhuang Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1373-1381,共9页
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper... A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr. 展开更多
关键词 CoNi-based superalloys microstructure COARSENING OXIDATION mechanical properties
下载PDF
Versatile fluidity test model for cast superalloys and comparison between IN718 and IN939
9
作者 Jun ZHANG Zi-qi JIE +1 位作者 Miao-nan LIU Min GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2881-2888,共8页
A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are as... A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity. 展开更多
关键词 FLUIDITY solidification range superalloyS surface tension VISCOSITY
下载PDF
Effect of Y on Oxidation Behavior of Directionally Solidified Ni-Based Single-Crystal Superalloy
10
作者 Zihan Zhao Kai Guan +2 位作者 Renjie Cui Jianchao Qin Zhaohui Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期510-522,共13页
The effect of yttrium(Y)addition on the oxidation behavior of a Ni-based directionally solidified single-crystal superalloy is investigated in this study.Isothermal oxidation tests for samples with different levels of... The effect of yttrium(Y)addition on the oxidation behavior of a Ni-based directionally solidified single-crystal superalloy is investigated in this study.Isothermal oxidation tests for samples with different levels of Y addition are conducted at 1100℃ in air.The Y content of the samples is determined by the actual pickup amount obtained from an Inductively Coupled Plasma-Atomic Emission Spectrometry test.It is discovered that the addition of Y increases the oxide resistance by the scale of an adhesive double-layer oxide,which is composed of Al_(2)O_(3) and spinel Ni(Cr,Al)_(2)O_(4).With 70 ppm of Y addition,the oxidation mass gain decreases from 12.6 g/m^(2) for the alloy without Y addition to 5.3 g/m^(2),and the oxidation rate decreases significantly.In addition,the internal nitride disappears after Y doping because of an increase in oxidation scale adherence and a decrease in oxidation products.In this study,the alloy with 660 ppm Y addition demonstrates the best oxidation resistance. 展开更多
关键词 Isothermal oxidation Element Y Single-crystal superalloy Oxide scale
下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
11
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
12
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees
13
作者 Yang Liu Yufeng Liu +6 位作者 Sha Zhang Lin Zhang Peng Zhang Shaorong Zhang Na Liu Zhou Li Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2037-2047,共11页
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-reso... The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders. 展开更多
关键词 Ni-based superalloys surface structure oxide layer thickness oxidation behavior element distribution
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
14
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Pulsed Unipolar-Polarisation Plasma Electrolytic Polishing of Ni-Based Superalloys:A Proof of Conception
15
作者 Chuanqiang Zhou Ning Qian +3 位作者 Honghua Su Jingyuan He Wenfeng Ding Jiuhua Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期163-179,共17页
The enhanced performance of aerospace equipment drives parts development towards integration,complexity,and structural optimization.This advancement promotes metal near-net fabrication technologies like wire electrica... The enhanced performance of aerospace equipment drives parts development towards integration,complexity,and structural optimization.This advancement promotes metal near-net fabrication technologies like wire electrical discharge machining(WEDM)and 3D printing.However,the high initial surface roughness from WEDM or 3D printing poses significant challenges for the high-performance surface finishing required.To effectively reduce the surface roughness of the workpieces with high initial surface roughness,this paper proposes pulsed unipolar-polarisation plasma electrolytic polishing(PUP-PEP).The study examined the material removal mechanisms and surface polishing quality of PUP-PEP.This technique combines the high current density and material removal rate of the electrolytic polishing mode with the superior surface polishing quality of PEP through voltage waveform modulation.For an Inconel-718 superalloy part fabricated by WEDM,PUP-PEP reduced surface roughness from R_(a)7.39μm to R_(a)0.27μm in 6 min under optimal conditions.The roughness decreased from R_(a)7.39μm to R_(a)0.78μm in the first 3 min under pulsed unipolar-polarisation voltage,resulting in a remarkable 233%increase in efficiency compared to that with conventional PEP.Subsequently,the voltage output voltage is transformed into a constant voltage mode,and PEP is continued based on PUP-PEP to finally reduce the workpiece surface roughness value to R_(a)0.27μm.The proposed PUP-PEP technology marks the implementation of‘polishing’instead of conventional rough-finish machining processes,presenting a new approach to the surface post-processing of metal near-net fabrication technologies. 展开更多
关键词 Pulsed unipolar-polarisation Plasma electrolytic polishing Voltage waveform superalloy Surface roughness Material removal rate
下载PDF
Enhancing high-temperature oxidation resistance of nickel superalloy obtained by laser powder bed fusion via reactive electric spark treatment
16
作者 S.K.MUKANOV M.I.PETRZHIK +4 位作者 A.E.KUDRYASHOV E.A.NAUMOVA F.A.BASKOV P.A.LOGINOV E.A.LEVASHOV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期3935-3948,共14页
The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(... The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(3)+CaMoO4)during oxidative annealing of surface layers modified by electric spark treatment(EST).The reactive EST of the LPBF-built items based on nickel EP741NP alloy was carried out with low-melting Al−12%Si,Al−6%Ca−0.6%Si and Al−7%Ca−1%Mn electrodes.It was found that under EST done by Al−7%Ca−1%Mn electrode an intermetallic(β-NiAl+γ'-Ni3Al)15μm-thick layer reinforced by spherical oxide(CaMe)O nanoparticles was formed.Formation of that structure increases the wear resistance of LPBF nickel superalloy by 4.5 times.Further oxidative annealing at 1000°C leads to a formation of continuous two-layered coating with an inner layer ofα-Al_(2)O_(3) and an outer layer of CaMoO4,which together act as an effective barrier preventing the diffusion of oxygen into the bulk of the superalloy. 展开更多
关键词 Ni-base superalloy laser powder bed fusion(LPBF) reactive electric spark treatment(EST) low-melting electrode oxidation resistance thermal barrier layer
下载PDF
Portevin-Le Chatelier Effect in Additively Manufactured and As-Cast Inconel 939 Nickel-Based Superalloy
17
作者 Moshe Nahmany Daniel Moreno +4 位作者 Yohanan Nahmana Mathan Zakai Ariel Yehuda Cohen Moshe Shapira Roni Shneck 《Journal of Minerals and Materials Characterization and Engineering》 2024年第6期299-315,共17页
Nickel-based superalloys, well-established in aeronautics, have recently gained significant traction in additive manufacturing. Inconel 939 is one of the alloys increasingly playing a vital role in this field. This pa... Nickel-based superalloys, well-established in aeronautics, have recently gained significant traction in additive manufacturing. Inconel 939 is one of the alloys increasingly playing a vital role in this field. This paper examines the development of the Portevin-Le Chatelier (PLC) effect in additively manufactured Inconel 939 in comparison with cast Inconel 939. A detailed analysis of tensile test characteristics was conducted, complemented by a high-resolution scanning electron microscopy (HR-SEM) investigation. The PLC region exhibited several properties during tensile testing, such as stress-strain behavior, cycle scale, and overall stress increase. The HR-SEM analysis of Gamma prime (γ') precipitates revealed distinct morphologies, which are suggested to be linked to the features of the PLC region. Samples with a high amount of γ' precipitates showed a less pronounced PLC region, while those with fewer γ' precipitates displayed a more distinct PLC effect. A mechanism for the cyclic drop-and-rise stress behavior, based on the work of Varvenne and La-Rose, was proposed, possibly induced by the varying morphologies of γ' precipitates in the IN939 alloy. Further study is needed to deepen the understanding of the relationship between the γ' micro-(nano) structure and the PLC phenomenon. 展开更多
关键词 Inconel 939 Gamma Prime γ' Portevin-Le Chatelier (PLC) Dynamic Strain Aging DSA Mechanical Properties Additive Manufacturing superalloyS
下载PDF
基于机器学习的镍基单晶高温合金蠕变寿命预测模型研究
18
作者 杜晓明 陆瑶 刘纪德 《沈阳理工大学学报》 CAS 2025年第1期44-50,共7页
构建合适的镍基单晶合金蠕变寿命预测模型,对于我国航空发动机叶片设计、强度分析和寿命预测具有重要意义。采用多项式回归、最近邻回归、支持向量机回归、决策树回归四种机器学习算法,建立镍基单晶高温合金蠕变寿命与合金成分、微观组... 构建合适的镍基单晶合金蠕变寿命预测模型,对于我国航空发动机叶片设计、强度分析和寿命预测具有重要意义。采用多项式回归、最近邻回归、支持向量机回归、决策树回归四种机器学习算法,建立镍基单晶高温合金蠕变寿命与合金成分、微观组织和蠕变工艺参数的关系模型,为镍基单晶高温合金的蠕变性能调控提供了新方法。基于蠕变寿命预测模型,系统地比较了四种算法和特征选择对模型性能的影响。结果表明,支持向量机回归模型的预测结果最优,相关性较高的四个特征依次为γ′固溶温度、Ta、W、Re。研究结果可为获得更有效的镍基单晶高温合金蠕变性能预测方法提供参考。 展开更多
关键词 机器学习 镍基单晶高温合金 特征选择 蠕变寿命
下载PDF
Quantitative analysis of homogenization treatment of INCONEL718 superalloy 被引量:14
19
作者 缪竹骏 单爱党 +3 位作者 吴元彪 卢俊 徐文亮 宋洪伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1009-1017,共9页
Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result sh... Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys. 展开更多
关键词 INCONEL718 superalloy HOMOGENIZATION Laves phase SEGREGATION
下载PDF
三价铬镀液中电沉积纳米晶体Fe-Ni-Cr合金箔 被引量:6
20
作者 杨余芳 龚竹青 +2 位作者 邓丽元 阳征会 马玉天 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期509-515,共7页
在氯化物-硫酸盐镀液体系中,以柠檬酸为络合剂,通过电沉积的方法获得厚度约为30μm的Fe-Ni-Cr合金箔。研究了电流密度、温度、pH值以及镀液中三氯化铬和柠檬酸含量对Fe-Ni-Cr合金箔成分的影响。确定了最佳工艺条件,即电流密度为10-20... 在氯化物-硫酸盐镀液体系中,以柠檬酸为络合剂,通过电沉积的方法获得厚度约为30μm的Fe-Ni-Cr合金箔。研究了电流密度、温度、pH值以及镀液中三氯化铬和柠檬酸含量对Fe-Ni-Cr合金箔成分的影响。确定了最佳工艺条件,即电流密度为10-20A/dm^2,pH值为1.60~2.70,温度为20-30℃。采用能量损失谱测定镀层成分,采用X射线衍射和扫描电镜分别测定镀层的晶体结构和表面形貌。研究结果表明,电沉积得到的合金箔成分为31.13%~54.24%Fe,44.64%~65.36%Ni,1.11%~3.52%Cr,镀层表面光亮平滑,抗拉强度为900.2~996.0MPa,电阻率为61.3~95.4μΩ·cm;Fe-Ni-Cr合金箔的晶粒尺寸小于10nm,为纳米晶体结构,具有良好的韧性和耐腐蚀性。 展开更多
关键词 三价铬 fe-ni-cr合金箔 电沉积 纳米晶体
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部