采用沉淀法制备铁掺杂镍碳酸盐纳米球前驱体,并对其进行硒化处理,得到性能优异的铁掺杂的氧化镍和硒化镍的混合物(Fe-NiO/NiSe2)电催化剂。利用XRD、XPS、TEM、FESEM等手段对材料的结构和组成进行表征,并对其进行了电化学性能测试。结...采用沉淀法制备铁掺杂镍碳酸盐纳米球前驱体,并对其进行硒化处理,得到性能优异的铁掺杂的氧化镍和硒化镍的混合物(Fe-NiO/NiSe2)电催化剂。利用XRD、XPS、TEM、FESEM等手段对材料的结构和组成进行表征,并对其进行了电化学性能测试。结果表明,Fe-NiO/NiSe2电催化剂材料具有优异的析氧性能,在1. 0 mol/L KOH电解液中,在10 m A/cm^2电流密度下所需过电势仅为323 m V,并具有显著的长期稳定性,作为析氧反应催化剂具有很好的应用前景。展开更多
Developing highly stable electrocatalysts under industry-compatible current densities(>500 mA cm^(-2))in an anion-exchange membrane water electrolyzer(AEMWE)is an enormous challenge for water splitting.Herein,based...Developing highly stable electrocatalysts under industry-compatible current densities(>500 mA cm^(-2))in an anion-exchange membrane water electrolyzer(AEMWE)is an enormous challenge for water splitting.Herein,based on the results of density function theory calculations,a dual heterogeneous interfacial structured NiSe/Fe-Ni(OH)_(2)catalyst was subtly designed and successfully prepared by electrodepositing Fe-doped Ni(OH)_(2)on NiSe-loaded nickel foam(NF).Fe doping-driven heterogeneous structures in NiSe/Fe-Ni(OH)_(2)markedly boost catalytic activity and durability at industrially compatible current densities in single hydrogen and oxygen evolution reactions under alkaline conditions.In particular,NiSe/Fe-Ni(OH)_(2)shows a negligible performance loss at 600 mA cm^(-2)at least 1,000 h for overall water splitting,a distinguished long-term durability acting as AEMWE electrodes at 600 mA cm^(-2)and 1 A cm^(-2)at 85℃for at least 95 h.Owing to Fe doping-induced strong synergetic effect between Ni and Fe,dual heterostructure-promoted charge transfer and redistribution,abundant catalytic active sites,and improvement of stability and durability,a mechanism of Fe doping-driven heterogeneous interfacial structurepromoted catalytic performance was proposed.This study provides a successful example of theory-directed catalyst preparation and pioneers a creative strategy for industry-compatible water splitting at high current density.展开更多
Although nickel-based catalysts display good catalytic capability and excellent corrosion resistance under alkaline electrolytes for water splitting,it is still imperative to enhance their activity for real device app...Although nickel-based catalysts display good catalytic capability and excellent corrosion resistance under alkaline electrolytes for water splitting,it is still imperative to enhance their activity for real device applications.Herein,we decorated Ni0.85Se hollow nanospheres onto reduced graphene oxide(RGO)through a hydrothermal route,then annealed this composite at different temperatures(400℃,NiSe2-400 and 450℃,NiSe2-450)under argon atmosphere,yielding a kind of NiSe2/RGO composite catalysts.Positron annihilation spectra revealed two types of vacancies formed in this composite catalyst.We found that the NiSe2-400 catalyst with dual Ni-Se vacancies is able to catalyze the oxygen evolution reaction(OER)efficiently,needing a mere 241 mV overpotential at 10 mA·cm−2.In addition,this catalyst exhibits outstanding stability.Computational studies show favorable energy barrier on NiSe2-400,enabling moderate OH−adsorption and O2 desorption,which leads to the enhanced energetics for OER.展开更多
文摘采用沉淀法制备铁掺杂镍碳酸盐纳米球前驱体,并对其进行硒化处理,得到性能优异的铁掺杂的氧化镍和硒化镍的混合物(Fe-NiO/NiSe2)电催化剂。利用XRD、XPS、TEM、FESEM等手段对材料的结构和组成进行表征,并对其进行了电化学性能测试。结果表明,Fe-NiO/NiSe2电催化剂材料具有优异的析氧性能,在1. 0 mol/L KOH电解液中,在10 m A/cm^2电流密度下所需过电势仅为323 m V,并具有显著的长期稳定性,作为析氧反应催化剂具有很好的应用前景。
基金supported by the National Natural Science Foundation of China(22162025,22068037)the Youth Innovation Team of Shaanxi Universities+2 种基金the Open and Innovation Fund of Hubei Three Gorges Laboratory(SK232001)the Regional Innovation Capability Leading Program of Shaanxi(2022QFY07-03,2022QFY07-06)the Shaanxi Province Training Program of Innovation and Entrepreneurship for Undergraduates(S202210719108)。
文摘Developing highly stable electrocatalysts under industry-compatible current densities(>500 mA cm^(-2))in an anion-exchange membrane water electrolyzer(AEMWE)is an enormous challenge for water splitting.Herein,based on the results of density function theory calculations,a dual heterogeneous interfacial structured NiSe/Fe-Ni(OH)_(2)catalyst was subtly designed and successfully prepared by electrodepositing Fe-doped Ni(OH)_(2)on NiSe-loaded nickel foam(NF).Fe doping-driven heterogeneous structures in NiSe/Fe-Ni(OH)_(2)markedly boost catalytic activity and durability at industrially compatible current densities in single hydrogen and oxygen evolution reactions under alkaline conditions.In particular,NiSe/Fe-Ni(OH)_(2)shows a negligible performance loss at 600 mA cm^(-2)at least 1,000 h for overall water splitting,a distinguished long-term durability acting as AEMWE electrodes at 600 mA cm^(-2)and 1 A cm^(-2)at 85℃for at least 95 h.Owing to Fe doping-induced strong synergetic effect between Ni and Fe,dual heterostructure-promoted charge transfer and redistribution,abundant catalytic active sites,and improvement of stability and durability,a mechanism of Fe doping-driven heterogeneous interfacial structurepromoted catalytic performance was proposed.This study provides a successful example of theory-directed catalyst preparation and pioneers a creative strategy for industry-compatible water splitting at high current density.
基金We acknowledge financial support from the Tianjin science and technology support key projects(No.18YFZCSF00500)the National Natural Science Foundation of China(Nos.21521001,21431006,21225315,21321002,91645202,51702312,and 21975237)+6 种基金the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(No.2015HSCUE007)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH036)the National Basic Research Program of China(Nos.2014CB931800 and 2018YFA0702001)the Chinese Academy of Sciences(Nos.KGZD-EW-T05 and XDA090301001)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)the Fundamental Research Funds for the Central Universities(No.WK2340000076)the Recruitment Program of Global Youth Experts.
文摘Although nickel-based catalysts display good catalytic capability and excellent corrosion resistance under alkaline electrolytes for water splitting,it is still imperative to enhance their activity for real device applications.Herein,we decorated Ni0.85Se hollow nanospheres onto reduced graphene oxide(RGO)through a hydrothermal route,then annealed this composite at different temperatures(400℃,NiSe2-400 and 450℃,NiSe2-450)under argon atmosphere,yielding a kind of NiSe2/RGO composite catalysts.Positron annihilation spectra revealed two types of vacancies formed in this composite catalyst.We found that the NiSe2-400 catalyst with dual Ni-Se vacancies is able to catalyze the oxygen evolution reaction(OER)efficiently,needing a mere 241 mV overpotential at 10 mA·cm−2.In addition,this catalyst exhibits outstanding stability.Computational studies show favorable energy barrier on NiSe2-400,enabling moderate OH−adsorption and O2 desorption,which leads to the enhanced energetics for OER.