The first-principles calculation of the disordered Ll0 phase boundary for the Fe-Pd system is attempted by combining the FLAPW electronic structure total energy calculations and the cluster variation method via the cl...The first-principles calculation of the disordered Ll0 phase boundary for the Fe-Pd system is attempted by combining the FLAPW electronic structure total energy calculations and the cluster variation method via the cluster expansion method. The lattice vibration effects are taken into account based on the Debye-Gruneisen model within quasi-harmonic approximation. The transition temperature is reproduced with very high accuracy. However, the experimental congruent composition of disordered L10 phase that significantly deviates from 1." 1 stoichiometry is not reproduced. Fulther calculations are attempted based on the phenomenological Lennard-Jones type pair potential, which is capable of introducing both tetragonality of the Ll0 ordered phase and additional configurational freedom because of the magnetic spins. The prelimi- nary calculations indicate that the tetragonality enhances the stability of the L10 ordered phase and the magnetic contributions also change the transition temperature. Despite these findings, the shift of the congruent composition still remains as a subject that needs further research. The electronic origin of the shifting of the congruent composition is briefly discussed.展开更多
A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-...A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al bifunctional catalyst could be separated from the solution directly and could synthesize H<sub>2</sub>O<sub>2</sub> in situ. The characterization results showed that Fe could improve the dispersion of Pd<sup>0</sup>, and the electronic interactions between Pd and Fe could increase the Pd<sup>0</sup> contents on the catalyst, which increased the productivity of H<sub>2</sub>O<sub>2</sub>. Furthermore, DFT calculations proved that the addition of Fe could inhibit the dissociation of O<sub>2</sub> and promote the nondissociative hydrogenation of O<sub>2</sub> on the surface of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al, which resulted in the increasement of H<sub>2</sub>O<sub>2</sub> selectivity. Finally, the in-situ synthesized H<sub>2</sub>O<sub>2</sub> by Pd was furtherly decomposed in situ by Fe to generate<span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span style="white-space:normal;color:#FFFFFF;font-family:Roboto, " background-color:#d46399;"=""><img src="Edit_e6a13073-7151-40b7-b2c3-a59a59d064fc.png" alt="" /></span></span></span>OH radicals to degrade organic pollutants. Therefore, Fe-Pd/ γ-Al<sub>2</sub>O<sub>3</sub>/Al catalysts exhibited excellent catalytic activity in the in-situ synthesis of H<sub>2</sub>O<sub>2</sub> and the degradation of RhB due to the synergistic effects between Pd and Fe on the catalyst. It provided a new idea for the design of bifunctional electro-Fenton catalysts. Ten cycles of experiments showed that the catalytic activity of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al catalyst could be maintained for a long time.展开更多
文摘The first-principles calculation of the disordered Ll0 phase boundary for the Fe-Pd system is attempted by combining the FLAPW electronic structure total energy calculations and the cluster variation method via the cluster expansion method. The lattice vibration effects are taken into account based on the Debye-Gruneisen model within quasi-harmonic approximation. The transition temperature is reproduced with very high accuracy. However, the experimental congruent composition of disordered L10 phase that significantly deviates from 1." 1 stoichiometry is not reproduced. Fulther calculations are attempted based on the phenomenological Lennard-Jones type pair potential, which is capable of introducing both tetragonality of the Ll0 ordered phase and additional configurational freedom because of the magnetic spins. The prelimi- nary calculations indicate that the tetragonality enhances the stability of the L10 ordered phase and the magnetic contributions also change the transition temperature. Despite these findings, the shift of the congruent composition still remains as a subject that needs further research. The electronic origin of the shifting of the congruent composition is briefly discussed.
文摘A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al bifunctional catalyst could be separated from the solution directly and could synthesize H<sub>2</sub>O<sub>2</sub> in situ. The characterization results showed that Fe could improve the dispersion of Pd<sup>0</sup>, and the electronic interactions between Pd and Fe could increase the Pd<sup>0</sup> contents on the catalyst, which increased the productivity of H<sub>2</sub>O<sub>2</sub>. Furthermore, DFT calculations proved that the addition of Fe could inhibit the dissociation of O<sub>2</sub> and promote the nondissociative hydrogenation of O<sub>2</sub> on the surface of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al, which resulted in the increasement of H<sub>2</sub>O<sub>2</sub> selectivity. Finally, the in-situ synthesized H<sub>2</sub>O<sub>2</sub> by Pd was furtherly decomposed in situ by Fe to generate<span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span style="white-space:normal;color:#FFFFFF;font-family:Roboto, " background-color:#d46399;"=""><img src="Edit_e6a13073-7151-40b7-b2c3-a59a59d064fc.png" alt="" /></span></span></span>OH radicals to degrade organic pollutants. Therefore, Fe-Pd/ γ-Al<sub>2</sub>O<sub>3</sub>/Al catalysts exhibited excellent catalytic activity in the in-situ synthesis of H<sub>2</sub>O<sub>2</sub> and the degradation of RhB due to the synergistic effects between Pd and Fe on the catalyst. It provided a new idea for the design of bifunctional electro-Fenton catalysts. Ten cycles of experiments showed that the catalytic activity of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al catalyst could be maintained for a long time.