Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obta...Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obtained for the Mg-Al alloy modified by combining Ca addition with carbon inoculation. Fe addition and addition sequence had no obvious effect on the grain refinement. Ca addition could effectively avoid grain-coarsening resulting from Fe in the carbon-inoculated Mg-Al alloy. The Al-C-O particles, actually being Al4C3, should act as potent substrates for a-Mg grains in the sample treated by combining Ca addition with carbon inoculation. However, the duplex-phase particles of AI4C3 coated on Al-Fe or Al-C-Fe should be the potent substrates for a-Mg grains if Fe existed in the Mg-Al melt. Ca addition can contribute to the formation of the particles of Al4C3 coated on Al-Fe or Al-C-Fe, regardless of the Fe addition sequence. The poisoning effect of Fe was effectively inhibited in the carbon-inoculated of Mg-Al alloy due to Ca addition, namely, Ca has a poisoning-free effect.展开更多
To investigate the possibility of inoculating eutectic cells, a novel AI-10Si-2Fe master alloy was synthesized and tested in Sr-modified A356 alloy. The new master alloy that consists of reAl, Si andβ-AIsFeSi phases ...To investigate the possibility of inoculating eutectic cells, a novel AI-10Si-2Fe master alloy was synthesized and tested in Sr-modified A356 alloy. The new master alloy that consists of reAl, Si andβ-AIsFeSi phases was prepared by a casting process, and the silicon phase was found to grow epitaxially from theβ-AIsFeSi particles. The inoculation efficiency of the new master alloy on Sr-modified A356 alloy has been investigated by quenching experiment and thermal analysis. With the addition of the new master alloy, the area density of eutectic cells is effectively increased by 100% and the eutectic growth temperature is increased by 1.5 ℃. Therefore, the new master alloy is deduced to introduce nucleating substrates for eutectic cells and to refine the eutectic cells in Sr-modifled A356 alloy. There is no poisonous interaction between the AI-10Si-2Fe master alloy and the Sr in this study. Consequently, the mechanical properties have been improved by the addition of the new master alloy.展开更多
As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refini...As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.展开更多
Mg-3%Al alloy was refined by carbon inoculation combining with 0.2%Ca addition.High grain refining efficiency was obtained and the synergistic refining mechanism was deeply discussed in the present study.Al-C-O partic...Mg-3%Al alloy was refined by carbon inoculation combining with 0.2%Ca addition.High grain refining efficiency was obtained and the synergistic refining mechanism was deeply discussed in the present study.Al-C-O particles,actually Al4C3 particles,were formed in the carbon-inoculated Mg-3%A1 alloy acting as nuclei forα-Mg grains.Ca addition had no obvious effect on size distribution of the nucleating particles.Ca segregation was proved on Al4C3 particles,which should reduce the interfacial energy of nuclei/Mg.The constitutional undercooling in front of nucleus/liquid was increased from 0.12℃to 0.15℃induced by 0.2%Ca addition.The synergistic grain refining efficiency can be attributed to the higher constitutional undercooling and lower the interface energy of nucleus/Mg induced by Ca addition.More nucleating particles with small size could be activated acting as potent nuclei ofα-Mg grains.Consequently,Mg-3%Al alloy could be effectively refined due to the synergistic effect induced by carbon inoculation combining with Ca.展开更多
C2Cl6 was used as grain refiner for AM60 magnesium alloys. The effects of grain refinement process on chemical composition, microstructure, impact energy, hardness and mechanical properties of magnesium alloys were in...C2Cl6 was used as grain refiner for AM60 magnesium alloys. The effects of grain refinement process on chemical composition, microstructure, impact energy, hardness and mechanical properties of magnesium alloys were investigated with XRF spectrometer, optical and electronic microscopes, pendulum impact tester, hardness tester and MTS material testing machine. The results show that C2Cl6 has good effects on microstructure and mechanical properties of AM60 magnesium alloys. The optimum usage of C2Cl6 in AM60 for getting the best properties is 1.0%. The results of electronic microscopic examination and theoretical analyses show that Al4C3 should be the potent heterogeneous nucleant for Mg-Al magnesium alloys.展开更多
In order to obtain an effective and reliable grain refiner for Mg-Al alloys, 1% (mass fraction) Mg3N2 was added into AZ31 Mg alloy. The microstructures of the Mg alloys were studied by optical microscopy, scan elect...In order to obtain an effective and reliable grain refiner for Mg-Al alloys, 1% (mass fraction) Mg3N2 was added into AZ31 Mg alloy. The microstructures of the Mg alloys were studied by optical microscopy, scan electron microscopy and X-ray energy dispersive spectroscopy, and the mechanical properties were determined. The results show that adding a small amount of Mg3N2 to AZ31 Mg alloy can refine the grain size from 103 to 58 μm. The ultimate tensile strength and elongation of AZ31 Mg alloy are 174.1MPa and 8.3%, respectively. After the addition of 1% Mg3N2, the ultimate tensile strength and elongation of AZ31 Mg alloy are increased up to 198.7 MPa and 11.8%, respectively. The grain refinement mechanism is that AIN is formed after Mg3N2 is added. Both AIN and Mg phases are of HCP lattice structure, and the disregistry between Mg phases and AIN along (0001)Mg//(0001)AIN is 3.04%, which is very effective for heterogeneous nucleation.展开更多
The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with...The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.展开更多
The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges es...The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges especially its tendency for grey to white transition (GWT) at this level of carbon content. However, hypereutectic grey iron possesses inherent properties that could be easily utilized for improved performance in automobile engines and brake pad system. Significantly, they could be modified for superior hardness, strength and toughness. This study presents the effect of microalloying on the mechanical behaviour of hypereutectic grey cast iron with carbon equivalence above 4.5. The first part of this work presented in this paper considers the addition of Cu-Ni and Cu-Ni-Mn to series of as-cast hypereutectic grey cast iron and their hardness and tensile strength were studied and compared. A total of 33 cast samples were obtained with the control sample. The examination of the micrographs revealed that graphite eutectics cells of Type A and A + D were obtained in the resulting microstructure. Results analyses showed that the ferrite forming tendency of silicon was suppressed due to the high carbon content of the as-cast hypereutectic grey iron coupled with the absence of inoculation which plays a great role in the graphite flake type, network, size and distribution. Cu-Ni microalloying was also confirmed to promote hardness with the hardening effect limit of nickel observed at 1.3% composition. For Cu-Mi-Mn addition, excess and free sulphur in the hyper- eutectic grey iron results in reverse effect of manganese on strength, hardness, reduced graphite flake size and shape.展开更多
基金Project (50901034) supported by the National Natural Science Foundation of China (NSFC)Project (2010-1174) supported by Scientific Research Foundation (SRF) for the Returned Overseas Chinese Scholars (ROCS), State Education Ministry (SEM)Project (2012ZZ0005)supported by the Fundamental Research Funds for the Central Universities, South China University of Technology, China
文摘Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obtained for the Mg-Al alloy modified by combining Ca addition with carbon inoculation. Fe addition and addition sequence had no obvious effect on the grain refinement. Ca addition could effectively avoid grain-coarsening resulting from Fe in the carbon-inoculated Mg-Al alloy. The Al-C-O particles, actually being Al4C3, should act as potent substrates for a-Mg grains in the sample treated by combining Ca addition with carbon inoculation. However, the duplex-phase particles of AI4C3 coated on Al-Fe or Al-C-Fe should be the potent substrates for a-Mg grains if Fe existed in the Mg-Al melt. Ca addition can contribute to the formation of the particles of Al4C3 coated on Al-Fe or Al-C-Fe, regardless of the Fe addition sequence. The poisoning effect of Fe was effectively inhibited in the carbon-inoculated of Mg-Al alloy due to Ca addition, namely, Ca has a poisoning-free effect.
基金supported by the National Natural Science Foundation of China(No.51371109)
文摘To investigate the possibility of inoculating eutectic cells, a novel AI-10Si-2Fe master alloy was synthesized and tested in Sr-modified A356 alloy. The new master alloy that consists of reAl, Si andβ-AIsFeSi phases was prepared by a casting process, and the silicon phase was found to grow epitaxially from theβ-AIsFeSi particles. The inoculation efficiency of the new master alloy on Sr-modified A356 alloy has been investigated by quenching experiment and thermal analysis. With the addition of the new master alloy, the area density of eutectic cells is effectively increased by 100% and the eutectic growth temperature is increased by 1.5 ℃. Therefore, the new master alloy is deduced to introduce nucleating substrates for eutectic cells and to refine the eutectic cells in Sr-modifled A356 alloy. There is no poisonous interaction between the AI-10Si-2Fe master alloy and the Sr in this study. Consequently, the mechanical properties have been improved by the addition of the new master alloy.
基金This work was supported by the National Natural Science Foundation of China(51871100).
文摘As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.
基金This work was supported by the National Natural Science Foundation of China(51574127)Natural Science Foundation of Guangdong Province(2014A030313221).
文摘Mg-3%Al alloy was refined by carbon inoculation combining with 0.2%Ca addition.High grain refining efficiency was obtained and the synergistic refining mechanism was deeply discussed in the present study.Al-C-O particles,actually Al4C3 particles,were formed in the carbon-inoculated Mg-3%A1 alloy acting as nuclei forα-Mg grains.Ca addition had no obvious effect on size distribution of the nucleating particles.Ca segregation was proved on Al4C3 particles,which should reduce the interfacial energy of nuclei/Mg.The constitutional undercooling in front of nucleus/liquid was increased from 0.12℃to 0.15℃induced by 0.2%Ca addition.The synergistic grain refining efficiency can be attributed to the higher constitutional undercooling and lower the interface energy of nucleus/Mg induced by Ca addition.More nucleating particles with small size could be activated acting as potent nuclei ofα-Mg grains.Consequently,Mg-3%Al alloy could be effectively refined due to the synergistic effect induced by carbon inoculation combining with Ca.
基金Project(2002AA336080) supported by the Projects of Development Plan of the State High-technology Research of China
文摘C2Cl6 was used as grain refiner for AM60 magnesium alloys. The effects of grain refinement process on chemical composition, microstructure, impact energy, hardness and mechanical properties of magnesium alloys were investigated with XRF spectrometer, optical and electronic microscopes, pendulum impact tester, hardness tester and MTS material testing machine. The results show that C2Cl6 has good effects on microstructure and mechanical properties of AM60 magnesium alloys. The optimum usage of C2Cl6 in AM60 for getting the best properties is 1.0%. The results of electronic microscopic examination and theoretical analyses show that Al4C3 should be the potent heterogeneous nucleant for Mg-Al magnesium alloys.
基金supported by the Guangdong Academy of Sciences,China(No.2021GDASYL-20210102002)the Foundation Strengthening Program,China(No.2019-JCJQ-ZD-142-00)the Hebei Province Graduate Innovation Funding Project,China(No.CXZZBS2022032).
基金Project(2007430023)supported by the Office of Education,Henan Province,ChinaProject(0612002500)supported by the Excellent Young Scientists Foundation of Henan Province,China
文摘In order to obtain an effective and reliable grain refiner for Mg-Al alloys, 1% (mass fraction) Mg3N2 was added into AZ31 Mg alloy. The microstructures of the Mg alloys were studied by optical microscopy, scan electron microscopy and X-ray energy dispersive spectroscopy, and the mechanical properties were determined. The results show that adding a small amount of Mg3N2 to AZ31 Mg alloy can refine the grain size from 103 to 58 μm. The ultimate tensile strength and elongation of AZ31 Mg alloy are 174.1MPa and 8.3%, respectively. After the addition of 1% Mg3N2, the ultimate tensile strength and elongation of AZ31 Mg alloy are increased up to 198.7 MPa and 11.8%, respectively. The grain refinement mechanism is that AIN is formed after Mg3N2 is added. Both AIN and Mg phases are of HCP lattice structure, and the disregistry between Mg phases and AIN along (0001)Mg//(0001)AIN is 3.04%, which is very effective for heterogeneous nucleation.
基金Project(51574127)supported by the National Natural Science Foundation of ChinaProject(2014A030313221)supported by the Natural Science Foundation of Guangdong Province,China
文摘The Mg-3%Al melt was inoculated by carbon with different holding time.The effect of holding time on grain refining efficiency was evaluated.The solidification characteristics of the carbon-inoculated Mg-3%Al melt with different holding time were assessed by computer-aided cooling curve analysis.The results showed that Mg-3%Al alloy could be effectively refined by carbon inoculation.Slight fading phenomenon occurred with increasing the holding time to 60 min.Carbon inoculation could significantly influence the shape of cooling curves of Mg-3%Al melt.The nucleation starting and minimum temperatures increased.The recalescence undercooling and duration decreased to almost zero after carbon inoculation.The grain refining efficiency of carbon inoculation could be assessed by the shape of the cooling curve and solidification characteristic parameters including nucleation starting and minimum temperatures,recalescence undercooling and duration.
文摘The hypereutectic region of grey cast iron has received very little attention especially for designing cast products by researchers. Due to its high carbon equivalence, hypereutectic grey iron poses some challenges especially its tendency for grey to white transition (GWT) at this level of carbon content. However, hypereutectic grey iron possesses inherent properties that could be easily utilized for improved performance in automobile engines and brake pad system. Significantly, they could be modified for superior hardness, strength and toughness. This study presents the effect of microalloying on the mechanical behaviour of hypereutectic grey cast iron with carbon equivalence above 4.5. The first part of this work presented in this paper considers the addition of Cu-Ni and Cu-Ni-Mn to series of as-cast hypereutectic grey cast iron and their hardness and tensile strength were studied and compared. A total of 33 cast samples were obtained with the control sample. The examination of the micrographs revealed that graphite eutectics cells of Type A and A + D were obtained in the resulting microstructure. Results analyses showed that the ferrite forming tendency of silicon was suppressed due to the high carbon content of the as-cast hypereutectic grey iron coupled with the absence of inoculation which plays a great role in the graphite flake type, network, size and distribution. Cu-Ni microalloying was also confirmed to promote hardness with the hardening effect limit of nickel observed at 1.3% composition. For Cu-Mi-Mn addition, excess and free sulphur in the hyper- eutectic grey iron results in reverse effect of manganese on strength, hardness, reduced graphite flake size and shape.