The technique of mechanical alloying(MA) for preparing amorphous Fe-Zr-B-(Cu) alloys has been studied The structure of samples was analysed by X-ray diffractometry, electron microscopy and Mssbauer spectroscopy.The re...The technique of mechanical alloying(MA) for preparing amorphous Fe-Zr-B-(Cu) alloys has been studied The structure of samples was analysed by X-ray diffractometry, electron microscopy and Mssbauer spectroscopy.The results show that Fe78Zr10B12 sample of a nearly complete amorphous phase may be prepared but in Fe91Zr7B2 sample metastable b c c phase was obtained Using the same procedure a mixture of amorphous phase and α-Fe(Zr, B) was generated in Fe85Zr7B8. Furthermore,the results of Mssbauer reveal that there are two kinds of short-range ordered phases in the sample. While adding Iat% Cu in Fe78Zr10B12 or Fe85Zr7B8 sample, it is found that the hyperfine field of amorphous phases decreases significantly.展开更多
The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercool...The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.展开更多
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las...To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.展开更多
The magnetoresistance effect and magnetic properties in amorphous and nanocrystalline Fe(Cu, Nb)-Si-B ribbons have been investigated, it was observed that the anisotropic magnetoresistance (AMR) of nanocrystalline all...The magnetoresistance effect and magnetic properties in amorphous and nanocrystalline Fe(Cu, Nb)-Si-B ribbons have been investigated, it was observed that the anisotropic magnetoresistance (AMR) of nanocrystalline alloy is much smaller than that of amorphous alloy, Indicating that the anisotropy of nanocrystalline alloy becomes smaller after crystallizing, and the smallest AMR is coincident with the excellent soft magnetic characteristics. It is believed that the smaller magnetic crystalline anisotropy is the origin of the excellent soft magnetic characteristics of nanocrystalline alloy.展开更多
Crystallization behavior of amorphous Zr 65 Cu 25 Al 10 alloy under isothermal annealing condition was investigated by DSC and XRD. It is found that two exothermic peaks appear in the DSC curve of amorphous Zr 65 Cu 2...Crystallization behavior of amorphous Zr 65 Cu 25 Al 10 alloy under isothermal annealing condition was investigated by DSC and XRD. It is found that two exothermic peaks appear in the DSC curve of amorphous Zr 65 Cu 25 Al 10 alloy, indicating that the crystallization proceeds through double stage mode. The crystallization process of amorphous Zr 65 Cu 25 Al 10 alloy under isothermal annealing condition is mainly controlled by nucleation and one dimensional growth with the crystallized volume fraction smaller than 70%. With the crystallized volume fraction ranging from 70% to 90%, crystallization process is mainly dominated by the growth of three dimensional pre existing quench in nuclei. And when the crystallized volume fraction reaches above 90%, transient nucleation becomes the master of the crystallization process.展开更多
The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination n...The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 um, 11.2 in solid state.10.932 nm, 10.932 in supercooled liquid region and 0.305 urn, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.展开更多
The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb content...The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb contents. It was found that the main features of the DSC thermograms (shape, relative separation and amplitude of the exothermic peaks characteristic for the precipitation of the Fe-(Si) solid solution and the transition metal borides) depend mainly on the composition of the precursor glass, and are only slightly affected by the heating rate between 20 and 80 K/min. The amplitude of the uprise of the magnetization in the TM curves (attributed to the precipitation of bcc-Fe(Si) and borides) decreases with increasing Nb-content. The Curietemperature of the precursor glasses. Tc(am1), the remainder amorphous phases, Tc(am2) and the bcc nanophase, Tc(n-Fe) are determined from the thermomagnetic curves. The shape of the TM curves is interpreted on the basis of the reactions describing the crystalIization of the hypo-eutectic Fe-B glasses.展开更多
The surface nanocrystallization of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by CO2 laser was studied by means of M(oe)ssbauer spectroscopy, transmission electro iroscope and X-ray diffraction. The result shows that ...The surface nanocrystallization of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by CO2 laser was studied by means of M(oe)ssbauer spectroscopy, transmission electro iroscope and X-ray diffraction. The result shows that under certain technical conditions, nanocrystalline is fiound on the surface of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by laser; the crystallization phase is α-Fe(Si) crystalline, and its size is about 10-20 nm; the nanocrystalline is uniformly distributed on amorphous base to keep the amorphous and crystallized phase in balance; the a mount of crystallization reaches 23% when the laser power is 300 W, the diameter of light spot is 20 mm, and the radiation speed is 20 mm/s. The phase balance can be controlled by adjusting the laser technology parameter. Laser radiation on the amorphous Fe73.5 Cu1Nb3Si13.5B9 alloy is an important technique for surface nanocrystallization of the amorphous alloys.展开更多
In this paper, the vacuum brazing of Si3N4 ceramic was carried out with Ti40Zr25Ni15Cu20 amorphous filler metal. The interfacial microstructure was investigated by scanning electron microscopy ( SEM ), energy disper...In this paper, the vacuum brazing of Si3N4 ceramic was carried out with Ti40Zr25Ni15Cu20 amorphous filler metal. The interfacial microstructure was investigated by scanning electron microscopy ( SEM ), energy dispersive spectroscopy (EDS) etc. According to the analysis, the interface reaction layer was mode up of TiN abut on the ceramic and the Ti-Si, Zr-Si compounds. The influence of brazing temperature and holding time on the joint strength was also studied. The results shows that the joint strength first increased and then decreased with the increasing of holding time and brazing temperature. The joint strength was significantly affected by the thickness of the reaction layer. Under the same experimental conditions, the joint brazed with amorphous filler metal exhibits much higher strength compared with the one brazed with crystalline filler metal with the same composition. To achieve higher joint strength at relatively low temperature, it is favorable to use the amorphous filler metal than the crystalline filler metal.展开更多
Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM)....Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18 min, indicating a certain phase transformation occurs in the matrix of amorphous Zr 70 Cu 20 Ni 10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr 70 Cu 20 Ni 10 alloy ranging from 360 ℃ to 400 ℃ with a temperature interval of 10 ℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380 ℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr 70 Cu 20 Ni 10 alloy is strongly temperature and time dependent. Further investigations are required to reveal the nature of such phenomenon.展开更多
文摘The technique of mechanical alloying(MA) for preparing amorphous Fe-Zr-B-(Cu) alloys has been studied The structure of samples was analysed by X-ray diffractometry, electron microscopy and Mssbauer spectroscopy.The results show that Fe78Zr10B12 sample of a nearly complete amorphous phase may be prepared but in Fe91Zr7B2 sample metastable b c c phase was obtained Using the same procedure a mixture of amorphous phase and α-Fe(Zr, B) was generated in Fe85Zr7B8. Furthermore,the results of Mssbauer reveal that there are two kinds of short-range ordered phases in the sample. While adding Iat% Cu in Fe78Zr10B12 or Fe85Zr7B8 sample, it is found that the hyperfine field of amorphous phases decreases significantly.
文摘The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.
基金supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,Chinathe Open Fund of the State Key Laboratory of Materials Processing and Die&Mould Technology in Huazhong University of Science and Technology,China
文摘To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.
基金Natural Science Foundation of Liaoning Province!(No. 972812).
文摘The magnetoresistance effect and magnetic properties in amorphous and nanocrystalline Fe(Cu, Nb)-Si-B ribbons have been investigated, it was observed that the anisotropic magnetoresistance (AMR) of nanocrystalline alloy is much smaller than that of amorphous alloy, Indicating that the anisotropy of nanocrystalline alloy becomes smaller after crystallizing, and the smallest AMR is coincident with the excellent soft magnetic characteristics. It is believed that the smaller magnetic crystalline anisotropy is the origin of the excellent soft magnetic characteristics of nanocrystalline alloy.
文摘Crystallization behavior of amorphous Zr 65 Cu 25 Al 10 alloy under isothermal annealing condition was investigated by DSC and XRD. It is found that two exothermic peaks appear in the DSC curve of amorphous Zr 65 Cu 25 Al 10 alloy, indicating that the crystallization proceeds through double stage mode. The crystallization process of amorphous Zr 65 Cu 25 Al 10 alloy under isothermal annealing condition is mainly controlled by nucleation and one dimensional growth with the crystallized volume fraction smaller than 70%. With the crystallized volume fraction ranging from 70% to 90%, crystallization process is mainly dominated by the growth of three dimensional pre existing quench in nuclei. And when the crystallized volume fraction reaches above 90%, transient nucleation becomes the master of the crystallization process.
文摘The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 um, 11.2 in solid state.10.932 nm, 10.932 in supercooled liquid region and 0.305 urn, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.
文摘The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb contents. It was found that the main features of the DSC thermograms (shape, relative separation and amplitude of the exothermic peaks characteristic for the precipitation of the Fe-(Si) solid solution and the transition metal borides) depend mainly on the composition of the precursor glass, and are only slightly affected by the heating rate between 20 and 80 K/min. The amplitude of the uprise of the magnetization in the TM curves (attributed to the precipitation of bcc-Fe(Si) and borides) decreases with increasing Nb-content. The Curietemperature of the precursor glasses. Tc(am1), the remainder amorphous phases, Tc(am2) and the bcc nanophase, Tc(n-Fe) are determined from the thermomagnetic curves. The shape of the TM curves is interpreted on the basis of the reactions describing the crystalIization of the hypo-eutectic Fe-B glasses.
文摘The surface nanocrystallization of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by CO2 laser was studied by means of M(oe)ssbauer spectroscopy, transmission electro iroscope and X-ray diffraction. The result shows that under certain technical conditions, nanocrystalline is fiound on the surface of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by laser; the crystallization phase is α-Fe(Si) crystalline, and its size is about 10-20 nm; the nanocrystalline is uniformly distributed on amorphous base to keep the amorphous and crystallized phase in balance; the a mount of crystallization reaches 23% when the laser power is 300 W, the diameter of light spot is 20 mm, and the radiation speed is 20 mm/s. The phase balance can be controlled by adjusting the laser technology parameter. Laser radiation on the amorphous Fe73.5 Cu1Nb3Si13.5B9 alloy is an important technique for surface nanocrystallization of the amorphous alloys.
基金Funded by National Natural Science Foundation of China (No. 50875117).
文摘In this paper, the vacuum brazing of Si3N4 ceramic was carried out with Ti40Zr25Ni15Cu20 amorphous filler metal. The interfacial microstructure was investigated by scanning electron microscopy ( SEM ), energy dispersive spectroscopy (EDS) etc. According to the analysis, the interface reaction layer was mode up of TiN abut on the ceramic and the Ti-Si, Zr-Si compounds. The influence of brazing temperature and holding time on the joint strength was also studied. The results shows that the joint strength first increased and then decreased with the increasing of holding time and brazing temperature. The joint strength was significantly affected by the thickness of the reaction layer. Under the same experimental conditions, the joint brazed with amorphous filler metal exhibits much higher strength compared with the one brazed with crystalline filler metal with the same composition. To achieve higher joint strength at relatively low temperature, it is favorable to use the amorphous filler metal than the crystalline filler metal.
文摘Crystallization behavior of amorphous Zr 70 Cu 20 Ni 10 alloy isothermally annealed at 380 ℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18 min, indicating a certain phase transformation occurs in the matrix of amorphous Zr 70 Cu 20 Ni 10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr 70 Cu 20 Ni 10 alloy ranging from 360 ℃ to 400 ℃ with a temperature interval of 10 ℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380 ℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr 70 Cu 20 Ni 10 alloy is strongly temperature and time dependent. Further investigations are required to reveal the nature of such phenomenon.