To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB...To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.展开更多
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme...To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.展开更多
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method....To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC-MoSi2/ZrO2-MoSi2 coating is dense and crack-free with a thickness of 250-300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa...In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well...The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.展开更多
Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica com...The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.展开更多
The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel...The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.展开更多
TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a ni...TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.展开更多
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particula...Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of...The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.展开更多
基金Project(50721003) supported by the Innovation Community Foundation of National Natural Science of ChinaProject(2011CB605805) supported by the National Basic Research Program of China
文摘To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.
基金Projects(51221001,50972120)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.
基金Projects(51221001,51222207)supported by the National Natural Science Foundation of ChinaProject(090677)supported by the Program for New Century Excellent Talents in University of ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC-MoSi2/ZrO2-MoSi2 coating is dense and crack-free with a thickness of 250-300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
文摘In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金Project(2005CB623703) supported by the State Key Fundamental Research and Development Programof China project(5JJ30103) supported by the Natural Science Foundation of Hunan Province
文摘The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.
文摘The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.
文摘The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.
基金supported by the Science Technology Foundation of Shanghai (072305113)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Science Technology Foundation of Shanghai Institute of Technology (KJ2008-07)
文摘TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
基金the National Natural Science Foundation of China (No50635030)the National Basic Research of China (No2007CB616913)the Program for New Century Excellent Talents in University (2005)
文摘Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
基金Supported by the National Key Basic Research Development Program of China(973 Program)(2007CB607605)the National Natural Science Foundation of China(50965008)
文摘The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.