Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the...Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.展开更多
The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance ...The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.展开更多
Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 ...Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.展开更多
The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties o...The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.展开更多
Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amo...Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amorphous and reacts with hydrogen to form B_(10)H_(14) . It efficiently prevents the intrusion of hydrogen to the sample, thus the destructive effect of hydrogen can be decreased greatly.展开更多
The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dy...The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.展开更多
A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized struct...A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of alpha -Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Fe-based amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.展开更多
The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology a...The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology and reactivity of amorphous boron powder were studied. The results show that the crystallinity of amorphous nano-boron powder is only 22.5%, and its purity reaches 92.86%. The high-energy ball milling can significantly refine boron powder particle sizes, whose average particle sizes are smaller than 50 nm, and specific surface areas are of up to 70.03 m2/g. When the transmission electron beam irradiates the samples, they rapidly melt. It can be seen that the monomer amorphous boron size is less than 30 nm from the specimen melting traces, which indicates that the samples have high reactivity.展开更多
Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed be...Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed between the layers of S-glass fibers. The effects of the Fe- CuNbSiB powder mass fraction on the complex permittivity, complex permeability, and microwave absorption of the composite panels have been studied in the frequency range of 2.6-18.0 GHz. The complex permittivity of the composite panels with different mass fractions of the FeCuNbSiB powders shows several peaks in the 2.6-18.0 GHz fre- quency range. The complex permeability of the composites decreases with the increasing frequency in the frequency range of 8-18 GHz. The composite with FeCuNbSiB/epoxy mass ratio of 2.5:1.0 has excellent microwave absorption properties of a minimum reflection loss value -30.5 dB at 10.93 GHz for a thickness of 2 mm. A reflection loss exceeding -10 dB can be obtained in a broad frequency range of 3.2-18.0 GHz with a thickness of 1.15-5.00 mm. For the FeCuNbSiB composites, the magnetic loss is the dominant term for microwave absorption. The FeCuNbSiB powders are a possible candidate for high-performance microwave absorption filler.展开更多
The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing tempe...The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing temperature,and the permeability decreases from 60 to 12,the core loss increases from 0.2 to 0.3 W·cm^(-3),DC-bias characteristic was improved with further increase of annealing temperature,and the magnetic properties become deteriorated due to decrease of permeability and enhancement of coercive force resulting from the crystallization of amorphous powder.展开更多
The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle si...The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the panicle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and panicle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.展开更多
The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by...The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC).It was found that a nearly complete amorphization could be achieved in the mixtures after ball milling for 23 h.Further ball milling led to the crystallization of the amorphous powders.A long time ball milling, e.g., 160 h, led to a complete crystallization of the amorphous powders and the formation of Al3Zr and Al13Fe4.The crystallization products caused by ball milling are almost the same as that produced by isothermal annealing of the amorphous powders in vacuum at 800 K for 1 h.展开更多
Ultrafine amorphous alloy powders of spherical shape with diameters from 10 to 50nm for Fe-Ni-B and Fe-Cr-B were prepared by chemical reduction. The amorphous structure of two powders was identified by X-ray diffracti...Ultrafine amorphous alloy powders of spherical shape with diameters from 10 to 50nm for Fe-Ni-B and Fe-Cr-B were prepared by chemical reduction. The amorphous structure of two powders was identified by X-ray diffraction. The B concentrations for the two alloy systems did not change dramatically, as the preparation condition changed. An oxide film covered up the powders. The maximum magnetization decreased as increasing the content of Ni or Cr.展开更多
The microstructures and mechanical properties of Als9 GdTNi3Fe alloy extruded from its amorphous powder were investigated at different temperatures. Devitrification process of amorphous phase was also analyzed. As a r...The microstructures and mechanical properties of Als9 GdTNi3Fe alloy extruded from its amorphous powder were investigated at different temperatures. Devitrification process of amorphous phase was also analyzed. As a result, the microstructure of the extruded alloy consists of fee α-Al, binary intermetallic Al3Gd and ternary intermetallic r l phase. The grain size of α-Al is fine. The intermetallic Al3Gd exists as equiaxed particle and τ1 phase appears rod like.展开更多
The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A sm...The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A small amount of β-Si3N4 formed at 1250℃ and increased slowly until the α- β transformation happened at 1700℃, whereas α-Si3N4 appeared at 1300℃ andincreased rapidly between 1500-1600℃. The formation of β phase at the lower temperature was caused by the nitridation of free Si due to the preexisted β-nuclei in the Si3N4 particles, whereasthe α phase was formed by solid crystallization from the amorphous matrix. There were α and β SiC formed at 1700℃ due to the presence of Sio and Co gases in the system. FTIR analysis shows that two new IR absorption at 1356 and 1420 cm-1, and an overall strong absorption in wide wavenumber range resulted from the powders annealed at 1600 and 1700℃ respectively展开更多
A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coatin...A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coating was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests in a 3.5% NaCl solution with a hard chromium coating as a reference. The FeCrSiBMn coating exhibited higher corrosion potential and lower corrosion current density than the hard chromium coating. The pore resistance(Rp) and charge transfer resistance(Rct) of FeCrSiBMn coating were higher than those of the hard chromium coating. In addition, after immersion in the Na Cl solution for 28 d, only small pores in the FeCrSiBMn coating were observed. All the results indicated that the FeCrSiBMn coating held superior corrosion resistance to the hard chromium coating. This could be attributed to the dense structure, low porosity and amorphous/nanocrystalline phases of the FeCrSiBMn coating.展开更多
Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industria...Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industrial trials to study the effect of a new type of assisted gas nozzles(AGNs)on powder size distribution and amorphous powder yield.The results show that increasing the atomization pressure can effectively improve the gas velocity for the Laval nozzle;however,it will decrease the aspiration pressure,and the optimal atomization pressure is 2.0 MPa.Compared with this,after the application of AGNs with the inlet velocity of 200 m s^(-1),assisted gas jet can increase the velocity of overall droplets in the break-up and solidification area by 40 m s^(-1) and the maximum cooling rate is increased from 1.9×10^(4) to 2.3×10^(4) K s^(-1).The predicted particle behavior is demonstrated by the industrial trails,that is,after the application of AGNs,the median diameter of powders d50 is decreased from 28.42 to 25.56 lm,the sphericity is increased from 0.874 to 0.927,the fraction of amorphous powders is increased from 90.4% to 99.4%,and only the coercivity is increased slightly due to the accumulation of internal stress.It is illustrated that the AGNs can improve the yield of fine amorphous powders,which is beneficial to providing high-performance raw powders for additive manufacturing technology.展开更多
Caking of products is a common and undesired phenomenon in food, chemical, pharmaceutical, and fertilizer industries which leads to extra cost and irregular quality. In general, caking processes could be identified as...Caking of products is a common and undesired phenomenon in food, chemical, pharmaceutical, and fertilizer industries which leads to extra cost and irregular quality. In general, caking processes could be identified as amorphous caking or humidity caking. In this review, history of studying caking, formation, methods, and prospects of these two caking processes are summarized and discussed. The relevant studies from the 1920 s to today are mentioned briefly. According to the different properties(i.e. hygrocapacity, hygrosensitivity, mechanical properties, and diffusion behavior) of amorphous powders and crystals, the conditions and mechanisms of amorphous and humidity caking are discussed. It is summarized that glass transition, moisture sorption, quantitative methods characterizing caking, accelerated caking tests, and simulation of caking behaviors are the main aspects that should be studied for a caking process. The methods for these five aspects are reviewed. Potential research points are proposed including caking of mixed particles, caking with phase transition or polymorph transition,non-homogenous caking, and simulation of caking.展开更多
Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface ...Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface modification to obtain the superhydrophobic Febased amorphous coatings with high hardness and dense structure on the Q 235 substrate.The results showed that the water contact angles(WCA)of the superhydrophobic coating was 160°±3.6°,and water droplets could bounce off the superhydrophobic coating surface,illustrating the excellent self-cleaning performance of coating.Notably,the corrosion current density(i_(corr))of the superhydrophobic coating further decreased by 2 orders of magnitude down to8.008×10^(-8)A·cm^(-2)compared to the as-deposited coating with 5.473×10^(-6)A·cm^(-2);the corrosion potential(E_(corr))of the superhydrophobic coating shifted by 34 mV to the positive side compared with that of the as-deposited coating(-310 mV).Likewise,the impedance modulus|Z|values of the superhydrophobic coating increased by nearly2 orders of magnitude up to 1×10^(5.6)compared to the asdeposited coating with 1×10^(3.8).Even through lasting immersion in NaCl for 10 days,|Z|values of the superhydrophobic coating were still much higher than those of the as-deposited coating.The superhydrophobic Fe-based amorphous coatings could respond to their applications under extreme conditions due to their excellent hydrophobicity and self-cleaning properties,illustrating their promising future in aerospace,automotive,and machinery industries.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
文摘Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.
基金financially supported by the National Natural Science Foundation of China (Nos. 52061135207, 51871016, 51921001, 5197011039, 5197011018, and U20b200318)the China Nuclear Power Technology Research Institute Co., Ltd
文摘The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001 and 50631010).
文摘Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.
基金Funded by the National Natural Science Foundation of China(No.51965044)the Basic Pre Research of General Armament Department(No.41423060313)。
文摘The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.
文摘Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amorphous and reacts with hydrogen to form B_(10)H_(14) . It efficiently prevents the intrusion of hydrogen to the sample, thus the destructive effect of hydrogen can be decreased greatly.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0300502)the Shenzhen Municipal Fundamental Science and Technology Research Program,China(Grant No.JCYJ20170815162201821)the Fundamental Research Funds for Central Universities,China(Grant No.31020170QD102)
文摘The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.
文摘A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of alpha -Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Fe-based amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.
基金Project(51002025)supported by the National Natural Science Foundation of China
文摘The amorphous boron powders with high activity were prepared by the high-energy ball milling-combustion synthesis method. The effects of the milling rate and milling time on the crystallinity, microscopic morphology and reactivity of amorphous boron powder were studied. The results show that the crystallinity of amorphous nano-boron powder is only 22.5%, and its purity reaches 92.86%. The high-energy ball milling can significantly refine boron powder particle sizes, whose average particle sizes are smaller than 50 nm, and specific surface areas are of up to 70.03 m2/g. When the transmission electron beam irradiates the samples, they rapidly melt. It can be seen that the monomer amorphous boron size is less than 30 nm from the specimen melting traces, which indicates that the samples have high reactivity.
基金financially supported by the National Natural Science Foundation of China (No. 60961001)the National Natural Science Fund Committee and the China Academy of Engineering Physics United Fund (No. 11076016)
文摘Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed between the layers of S-glass fibers. The effects of the Fe- CuNbSiB powder mass fraction on the complex permittivity, complex permeability, and microwave absorption of the composite panels have been studied in the frequency range of 2.6-18.0 GHz. The complex permittivity of the composite panels with different mass fractions of the FeCuNbSiB powders shows several peaks in the 2.6-18.0 GHz fre- quency range. The complex permeability of the composites decreases with the increasing frequency in the frequency range of 8-18 GHz. The composite with FeCuNbSiB/epoxy mass ratio of 2.5:1.0 has excellent microwave absorption properties of a minimum reflection loss value -30.5 dB at 10.93 GHz for a thickness of 2 mm. A reflection loss exceeding -10 dB can be obtained in a broad frequency range of 3.2-18.0 GHz with a thickness of 1.15-5.00 mm. For the FeCuNbSiB composites, the magnetic loss is the dominant term for microwave absorption. The FeCuNbSiB powders are a possible candidate for high-performance microwave absorption filler.
基金This work was financially supported by Beijing Municipal Science and Technology Program(No.D0405003040121).
文摘The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing temperature,and the permeability decreases from 60 to 12,the core loss increases from 0.2 to 0.3 W·cm^(-3),DC-bias characteristic was improved with further increase of annealing temperature,and the magnetic properties become deteriorated due to decrease of permeability and enhancement of coercive force resulting from the crystallization of amorphous powder.
基金Project(51002025) supported by the National Natural Science Foundation of China
文摘The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the panicle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and panicle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.
基金financial support of the National Natural Science Foundation of China (No. 50371072)the Hunan Provincial Natural Science Foundation (No. 09JJ3086)
文摘The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC).It was found that a nearly complete amorphization could be achieved in the mixtures after ball milling for 23 h.Further ball milling led to the crystallization of the amorphous powders.A long time ball milling, e.g., 160 h, led to a complete crystallization of the amorphous powders and the formation of Al3Zr and Al13Fe4.The crystallization products caused by ball milling are almost the same as that produced by isothermal annealing of the amorphous powders in vacuum at 800 K for 1 h.
文摘Ultrafine amorphous alloy powders of spherical shape with diameters from 10 to 50nm for Fe-Ni-B and Fe-Cr-B were prepared by chemical reduction. The amorphous structure of two powders was identified by X-ray diffraction. The B concentrations for the two alloy systems did not change dramatically, as the preparation condition changed. An oxide film covered up the powders. The maximum magnetization decreased as increasing the content of Ni or Cr.
文摘The microstructures and mechanical properties of Als9 GdTNi3Fe alloy extruded from its amorphous powder were investigated at different temperatures. Devitrification process of amorphous phase was also analyzed. As a result, the microstructure of the extruded alloy consists of fee α-Al, binary intermetallic Al3Gd and ternary intermetallic r l phase. The grain size of α-Al is fine. The intermetallic Al3Gd exists as equiaxed particle and τ1 phase appears rod like.
文摘The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A small amount of β-Si3N4 formed at 1250℃ and increased slowly until the α- β transformation happened at 1700℃, whereas α-Si3N4 appeared at 1300℃ andincreased rapidly between 1500-1600℃. The formation of β phase at the lower temperature was caused by the nitridation of free Si due to the preexisted β-nuclei in the Si3N4 particles, whereasthe α phase was formed by solid crystallization from the amorphous matrix. There were α and β SiC formed at 1700℃ due to the presence of Sio and Co gases in the system. FTIR analysis shows that two new IR absorption at 1356 and 1420 cm-1, and an overall strong absorption in wide wavenumber range resulted from the powders annealed at 1600 and 1700℃ respectively
文摘A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coating was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests in a 3.5% NaCl solution with a hard chromium coating as a reference. The FeCrSiBMn coating exhibited higher corrosion potential and lower corrosion current density than the hard chromium coating. The pore resistance(Rp) and charge transfer resistance(Rct) of FeCrSiBMn coating were higher than those of the hard chromium coating. In addition, after immersion in the Na Cl solution for 28 d, only small pores in the FeCrSiBMn coating were observed. All the results indicated that the FeCrSiBMn coating held superior corrosion resistance to the hard chromium coating. This could be attributed to the dense structure, low porosity and amorphous/nanocrystalline phases of the FeCrSiBMn coating.
基金funded by Key research and development project of Shandong province in China(Grant Number 2018TSCYCX-10).
文摘Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industrial trials to study the effect of a new type of assisted gas nozzles(AGNs)on powder size distribution and amorphous powder yield.The results show that increasing the atomization pressure can effectively improve the gas velocity for the Laval nozzle;however,it will decrease the aspiration pressure,and the optimal atomization pressure is 2.0 MPa.Compared with this,after the application of AGNs with the inlet velocity of 200 m s^(-1),assisted gas jet can increase the velocity of overall droplets in the break-up and solidification area by 40 m s^(-1) and the maximum cooling rate is increased from 1.9×10^(4) to 2.3×10^(4) K s^(-1).The predicted particle behavior is demonstrated by the industrial trails,that is,after the application of AGNs,the median diameter of powders d50 is decreased from 28.42 to 25.56 lm,the sphericity is increased from 0.874 to 0.927,the fraction of amorphous powders is increased from 90.4% to 99.4%,and only the coercivity is increased slightly due to the accumulation of internal stress.It is illustrated that the AGNs can improve the yield of fine amorphous powders,which is beneficial to providing high-performance raw powders for additive manufacturing technology.
基金the financial support of Major National Science and Technology Projects(2017ZX07402003)Innovative Group Project 21621004Major Science and Technology Program for Water Pollution Control and Treatment(NO.2015ZX07202-013)
文摘Caking of products is a common and undesired phenomenon in food, chemical, pharmaceutical, and fertilizer industries which leads to extra cost and irregular quality. In general, caking processes could be identified as amorphous caking or humidity caking. In this review, history of studying caking, formation, methods, and prospects of these two caking processes are summarized and discussed. The relevant studies from the 1920 s to today are mentioned briefly. According to the different properties(i.e. hygrocapacity, hygrosensitivity, mechanical properties, and diffusion behavior) of amorphous powders and crystals, the conditions and mechanisms of amorphous and humidity caking are discussed. It is summarized that glass transition, moisture sorption, quantitative methods characterizing caking, accelerated caking tests, and simulation of caking behaviors are the main aspects that should be studied for a caking process. The methods for these five aspects are reviewed. Potential research points are proposed including caking of mixed particles, caking with phase transition or polymorph transition,non-homogenous caking, and simulation of caking.
基金financially supported by the National Natural Science Foundation of China(Nos.51901092,52075234)the Program of"Science and Technology International Cooperation Demonstrative Base of Metal Surface Engineering along the Silk Road(No.2017D01003)"+3 种基金the"111"project(No.D21032)the Key Research Program of Education Department of Gansu Province(No.GSSYLXM-03)the Natural Science Foundation of Gansu Province(No.20JR5RA431)Hongliu Distinguished Young Talent Support Program of Lanzhou University of Technology,and the Open Fund Project of Hunan Province Key Laboratory of Electromagnetic Equipment Design and Manufacturing,Hunan Institute of Technology(No.DC202001)。
文摘Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface modification to obtain the superhydrophobic Febased amorphous coatings with high hardness and dense structure on the Q 235 substrate.The results showed that the water contact angles(WCA)of the superhydrophobic coating was 160°±3.6°,and water droplets could bounce off the superhydrophobic coating surface,illustrating the excellent self-cleaning performance of coating.Notably,the corrosion current density(i_(corr))of the superhydrophobic coating further decreased by 2 orders of magnitude down to8.008×10^(-8)A·cm^(-2)compared to the as-deposited coating with 5.473×10^(-6)A·cm^(-2);the corrosion potential(E_(corr))of the superhydrophobic coating shifted by 34 mV to the positive side compared with that of the as-deposited coating(-310 mV).Likewise,the impedance modulus|Z|values of the superhydrophobic coating increased by nearly2 orders of magnitude up to 1×10^(5.6)compared to the asdeposited coating with 1×10^(3.8).Even through lasting immersion in NaCl for 10 days,|Z|values of the superhydrophobic coating were still much higher than those of the as-deposited coating.The superhydrophobic Fe-based amorphous coatings could respond to their applications under extreme conditions due to their excellent hydrophobicity and self-cleaning properties,illustrating their promising future in aerospace,automotive,and machinery industries.