Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the...Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.展开更多
The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance ...The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.展开更多
Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 ...Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.展开更多
The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties o...The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.展开更多
Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amo...Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amorphous and reacts with hydrogen to form B_(10)H_(14) . It efficiently prevents the intrusion of hydrogen to the sample, thus the destructive effect of hydrogen can be decreased greatly.展开更多
The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dy...The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.展开更多
A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized struct...A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of alpha -Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Fe-based amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.展开更多
A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coatin...A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coating was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests in a 3.5% NaCl solution with a hard chromium coating as a reference. The FeCrSiBMn coating exhibited higher corrosion potential and lower corrosion current density than the hard chromium coating. The pore resistance(Rp) and charge transfer resistance(Rct) of FeCrSiBMn coating were higher than those of the hard chromium coating. In addition, after immersion in the Na Cl solution for 28 d, only small pores in the FeCrSiBMn coating were observed. All the results indicated that the FeCrSiBMn coating held superior corrosion resistance to the hard chromium coating. This could be attributed to the dense structure, low porosity and amorphous/nanocrystalline phases of the FeCrSiBMn coating.展开更多
Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface ...Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface modification to obtain the superhydrophobic Febased amorphous coatings with high hardness and dense structure on the Q 235 substrate.The results showed that the water contact angles(WCA)of the superhydrophobic coating was 160°±3.6°,and water droplets could bounce off the superhydrophobic coating surface,illustrating the excellent self-cleaning performance of coating.Notably,the corrosion current density(i_(corr))of the superhydrophobic coating further decreased by 2 orders of magnitude down to8.008×10^(-8)A·cm^(-2)compared to the as-deposited coating with 5.473×10^(-6)A·cm^(-2);the corrosion potential(E_(corr))of the superhydrophobic coating shifted by 34 mV to the positive side compared with that of the as-deposited coating(-310 mV).Likewise,the impedance modulus|Z|values of the superhydrophobic coating increased by nearly2 orders of magnitude up to 1×10^(5.6)compared to the asdeposited coating with 1×10^(3.8).Even through lasting immersion in NaCl for 10 days,|Z|values of the superhydrophobic coating were still much higher than those of the as-deposited coating.The superhydrophobic Fe-based amorphous coatings could respond to their applications under extreme conditions due to their excellent hydrophobicity and self-cleaning properties,illustrating their promising future in aerospace,automotive,and machinery industries.展开更多
With processes of arc melting, inductive melting and copper mold suction casting, a plate Fe-based bulk amorphous alloy Fe_(60)Co_8Zr_(10)Mo_5W_2B_(15) with a thickness of 1mm was prepared. The surfaces and fractures ...With processes of arc melting, inductive melting and copper mold suction casting, a plate Fe-based bulk amorphous alloy Fe_(60)Co_8Zr_(10)Mo_5W_2B_(15) with a thickness of 1mm was prepared. The surfaces and fractures of the cast bulk amorphous alloy were agleam and with typical metallic luster. The glass transition temperature(T_g), supercooled liquid region(△T_x)and reduced glass transition temperature(T_(rg))of the prepared Fe-based amorphous alloy are 884 K,63 K, and 0.611 respectively. The fracture toughness of the cast bulk amorphous alloy is at the level of 1.6 MPa·m^(1/2).展开更多
An inflection hehaviour was revealed during isothermal annealing under the observation of transition of the coercivity of Fe-Si-B amorphous alloys during local crystallization.It may be interpreted by the transition ...An inflection hehaviour was revealed during isothermal annealing under the observation of transition of the coercivity of Fe-Si-B amorphous alloys during local crystallization.It may be interpreted by the transition of α-Fe grain precipitated from single to multiple domain, Thus,the theoretical expression of H_0-t_a may be derived.The plot of expression H_0-t_a calcu- lated well represents the feature of the experimental curve.展开更多
This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters(plasma power,primary gas flow rate,powder feed rate,and stand-off dista...This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters(plasma power,primary gas flow rate,powder feed rate,and stand-off distance).X-ray diffraction of the coatings deposited at optimized spray parameters showed the presence of amorphous/crystalline phase.Coatings deposited at a lower plasma power and highest gas flow rate exhibited better density,hardness,and wear resistance.All coatings demonstrated equally good resistance against the corrosive environment(3.5wt%NaCl solution).Mechanical,wear,and tribological studies indicated that a single process parameter optimization cannot provide good coating performance;instead,all process parameters have a unique role in defining better properties for the coating by con-trolling the in-flight particle temperature and velocity profile,followed by the cooling pattern of molten droplet before impingement on the substrate.展开更多
Because of its unique long range disordered structure and numerous free volume,amorphous alloy is considered to be able to accommodate the damage caused by ion bombardment and has good irradiation resistance.2 MeV He+...Because of its unique long range disordered structure and numerous free volume,amorphous alloy is considered to be able to accommodate the damage caused by ion bombardment and has good irradiation resistance.2 MeV He+ions were selected to irradiate amorphous alloy Fe80Si7B13,and it was found that the arrangement of atoms in the amorphous alloy became uneven.In the bubble layer located near the He ion range which was about 3.5μm from the surface,the local atoms had a tendency of ordered arrangement.Under the irradiation,no obvious damage could be observed on the surface of the amorphous alloy,while the surface roughness increased,which reduced the surface relative reflectivity of the amorphous alloy.After the irradiation,the Fe-based amorphous alloy maintained the soft magnetic performance.The variation of atomic arrangement in the amorphous alloy enhanced its saturation magnetic induction intensity.展开更多
Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more ...Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.展开更多
Designing low melting point and low basicity refining slag suitable for Fe-based amorphous alloys and understanding the inclusions’formation,removal,influencing mechanisms are quite vital in the fields of metallurgy ...Designing low melting point and low basicity refining slag suitable for Fe-based amorphous alloys and understanding the inclusions’formation,removal,influencing mechanisms are quite vital in the fields of metallurgy and materials.In this study,a novel 13%SiO_(2)-32%CaO-30%Al_(2)O_(3)-25%B_(2)O_(3)(wt.%)refining slag was designed after careful calculations of the liquid phase region,slag-metal equilibrium,surface tension,viscosity,deoxidation capability and sulfur distribution ratio.After refining with our designed slag,the content of impurities and the number density of inclusions in a representative Fe_(83)Si_(2)B_(15)(at.%)amor-phous alloy were significantly reduced.Moreover,the glass-forming ability(GFA)of the alloy was also enhanced,enabling the preparation of amorphous ribbons with a lower cooling rate.Based on the impu-rities in Fe-based amorphous alloys as well as the calculated oxide and sulfide free energy diagrams,CaO,SiO_(2),Al_(2)O_(3) oxides and CaS,TiS,MnS sulfides will form in the master alloy.The high melting point in-clusions in the melt are generally removed via a floatation-separation-absorption process and the Mn,Ti,S impurities are removed via slag-metal interface reactions during refining.As for the detrimental effect of inclusions on glass formation,the small lattice disregistry between Ti,Mn-containing inclusions and primaryα-Fe gains reveal that these inclusions are effective in promoting the heterogeneous nucleation,and therefore greatly deteriorate the GFA.These findings are important and provide an ideal solution to purifying the Fe-based amorphous alloys by refining and enhancing the GFA for industrial production.展开更多
The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f...The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.展开更多
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were cha...Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were characterized simultaneously in this article. The results show that the as-deposited coatings consist of amorphous matrix and some precipitated nanocrystals, while the amorphous fraction and particle deformation as well as crystallization mechanism are significantly sensitive to the spraying parameters. The amorphous coatings express high microhardness and excellent wear resistance under dry frictional wear condition, which attributes to the inherent characteristic of amorphous phase and the dispersion strengthening of precipitated nanocrystals. The dominant wear mechanism of the amorphous coatings is fatigue wear accompanying with oxidative wear. In addition, the microhardness and wear resistance of the amorphous coatings were improved by optimizing spraying parameters, owing to the effect of both structural character and proper proportional of amorphous and nanocrystals fraction.展开更多
In this study,a few Fe-based amorphous matrix composite coatings reinforced with various portions(4,8 and16 vol.%) of 31 6L stainless steel powders have been successfully produced through high velocity oxy-fuel(HVOF) ...In this study,a few Fe-based amorphous matrix composite coatings reinforced with various portions(4,8 and16 vol.%) of 31 6L stainless steel powders have been successfully produced through high velocity oxy-fuel(HVOF) spraying.The microstructure of the composite coatings was systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The main structure of composite coatings remained amorphous while 31 6L stainless steel splats were distributed homogeneously in the amorphous matrix and well connected with surrounding amorphous phase.Bonding strength of coatings to the substrate was determined by 'pull-off' tensile tests.The results revealed that the31 6L stainless steel phase effectively improved the bonding strength of amorphous coatings,which is mainly contributed by the strong metallurgical bonding between stainless steel and amorphous splats.The addition of31 6L stainless steel also enhanced the ductility and fracture resistance of the coatings due to the ductile stainless steel phases,which can arrest crack propagation and increase energy dissipation.展开更多
Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from...Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
文摘Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion.
基金financially supported by the National Natural Science Foundation of China (Nos. 52061135207, 51871016, 51921001, 5197011039, 5197011018, and U20b200318)the China Nuclear Power Technology Research Institute Co., Ltd
文摘The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001 and 50631010).
文摘Fe-based amorphous alloys with ductility were synthesized using the commercial cast iron QT50 (denoted as QT) with the combining minor addition of B and Al by single roller melt-spinning. The melt-spun (QT1-xBx)99Al1 (x is from 0.006wt% to 0.01wt%) amorphous alloys exhibit onset crystallization temperatures and Curie temperatures of 759-780 and 629-642 K respectively, and whi- ch increase with B content. The amorphous ribbons are ductile and can be bent 180° without breaking. With the increase in B content from 0.006wt% to 0.01wt%, the Vickers microhardness of the amorphous alloys increases from Hv 830 to Hv 1110. The effects of the additional B and Al elements on the glass forming ability and mechanical properties were also discussed.
基金Funded by the National Natural Science Foundation of China(No.51965044)the Basic Pre Research of General Armament Department(No.41423060313)。
文摘The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.
文摘Substituting boron for carbon can improve the corrosion behavior of Fe-based amorphous significantly especially in acid solution with saturated H_2S. XPS analysis proves that boron enriches in the surface layer of amorphous and reacts with hydrogen to form B_(10)H_(14) . It efficiently prevents the intrusion of hydrogen to the sample, thus the destructive effect of hydrogen can be decreased greatly.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0300502)the Shenzhen Municipal Fundamental Science and Technology Research Program,China(Grant No.JCYJ20170815162201821)the Fundamental Research Funds for Central Universities,China(Grant No.31020170QD102)
文摘The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.
文摘A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with high glass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of alpha -Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Fe-based amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.
文摘A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coating was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests in a 3.5% NaCl solution with a hard chromium coating as a reference. The FeCrSiBMn coating exhibited higher corrosion potential and lower corrosion current density than the hard chromium coating. The pore resistance(Rp) and charge transfer resistance(Rct) of FeCrSiBMn coating were higher than those of the hard chromium coating. In addition, after immersion in the Na Cl solution for 28 d, only small pores in the FeCrSiBMn coating were observed. All the results indicated that the FeCrSiBMn coating held superior corrosion resistance to the hard chromium coating. This could be attributed to the dense structure, low porosity and amorphous/nanocrystalline phases of the FeCrSiBMn coating.
基金financially supported by the National Natural Science Foundation of China(Nos.51901092,52075234)the Program of"Science and Technology International Cooperation Demonstrative Base of Metal Surface Engineering along the Silk Road(No.2017D01003)"+3 种基金the"111"project(No.D21032)the Key Research Program of Education Department of Gansu Province(No.GSSYLXM-03)the Natural Science Foundation of Gansu Province(No.20JR5RA431)Hongliu Distinguished Young Talent Support Program of Lanzhou University of Technology,and the Open Fund Project of Hunan Province Key Laboratory of Electromagnetic Equipment Design and Manufacturing,Hunan Institute of Technology(No.DC202001)。
文摘Amorphous alloys without crystalline defects(dislocation,crystal boundary)are ideal hydrophobic coating materials due to their low surface energy.This work used a synergistic method of detonation spraying and surface modification to obtain the superhydrophobic Febased amorphous coatings with high hardness and dense structure on the Q 235 substrate.The results showed that the water contact angles(WCA)of the superhydrophobic coating was 160°±3.6°,and water droplets could bounce off the superhydrophobic coating surface,illustrating the excellent self-cleaning performance of coating.Notably,the corrosion current density(i_(corr))of the superhydrophobic coating further decreased by 2 orders of magnitude down to8.008×10^(-8)A·cm^(-2)compared to the as-deposited coating with 5.473×10^(-6)A·cm^(-2);the corrosion potential(E_(corr))of the superhydrophobic coating shifted by 34 mV to the positive side compared with that of the as-deposited coating(-310 mV).Likewise,the impedance modulus|Z|values of the superhydrophobic coating increased by nearly2 orders of magnitude up to 1×10^(5.6)compared to the asdeposited coating with 1×10^(3.8).Even through lasting immersion in NaCl for 10 days,|Z|values of the superhydrophobic coating were still much higher than those of the as-deposited coating.The superhydrophobic Fe-based amorphous coatings could respond to their applications under extreme conditions due to their excellent hydrophobicity and self-cleaning properties,illustrating their promising future in aerospace,automotive,and machinery industries.
文摘With processes of arc melting, inductive melting and copper mold suction casting, a plate Fe-based bulk amorphous alloy Fe_(60)Co_8Zr_(10)Mo_5W_2B_(15) with a thickness of 1mm was prepared. The surfaces and fractures of the cast bulk amorphous alloy were agleam and with typical metallic luster. The glass transition temperature(T_g), supercooled liquid region(△T_x)and reduced glass transition temperature(T_(rg))of the prepared Fe-based amorphous alloy are 884 K,63 K, and 0.611 respectively. The fracture toughness of the cast bulk amorphous alloy is at the level of 1.6 MPa·m^(1/2).
文摘An inflection hehaviour was revealed during isothermal annealing under the observation of transition of the coercivity of Fe-Si-B amorphous alloys during local crystallization.It may be interpreted by the transition of α-Fe grain precipitated from single to multiple domain, Thus,the theoretical expression of H_0-t_a may be derived.The plot of expression H_0-t_a calcu- lated well represents the feature of the experimental curve.
文摘This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters(plasma power,primary gas flow rate,powder feed rate,and stand-off distance).X-ray diffraction of the coatings deposited at optimized spray parameters showed the presence of amorphous/crystalline phase.Coatings deposited at a lower plasma power and highest gas flow rate exhibited better density,hardness,and wear resistance.All coatings demonstrated equally good resistance against the corrosive environment(3.5wt%NaCl solution).Mechanical,wear,and tribological studies indicated that a single process parameter optimization cannot provide good coating performance;instead,all process parameters have a unique role in defining better properties for the coating by con-trolling the in-flight particle temperature and velocity profile,followed by the cooling pattern of molten droplet before impingement on the substrate.
基金by National Natural Science Foundation of China(Nos.11675035,11975065 and 11375037).
文摘Because of its unique long range disordered structure and numerous free volume,amorphous alloy is considered to be able to accommodate the damage caused by ion bombardment and has good irradiation resistance.2 MeV He+ions were selected to irradiate amorphous alloy Fe80Si7B13,and it was found that the arrangement of atoms in the amorphous alloy became uneven.In the bubble layer located near the He ion range which was about 3.5μm from the surface,the local atoms had a tendency of ordered arrangement.Under the irradiation,no obvious damage could be observed on the surface of the amorphous alloy,while the surface roughness increased,which reduced the surface relative reflectivity of the amorphous alloy.After the irradiation,the Fe-based amorphous alloy maintained the soft magnetic performance.The variation of atomic arrangement in the amorphous alloy enhanced its saturation magnetic induction intensity.
基金supported by GuangDong Basic and Applied Basic Research Foundation(No.2020A1515110128).
文摘Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.
基金supported by the National Natural Science Foun-dation of China (No.52174217)China Postdoctoral Science Foundation (No.2020M682495).
文摘Designing low melting point and low basicity refining slag suitable for Fe-based amorphous alloys and understanding the inclusions’formation,removal,influencing mechanisms are quite vital in the fields of metallurgy and materials.In this study,a novel 13%SiO_(2)-32%CaO-30%Al_(2)O_(3)-25%B_(2)O_(3)(wt.%)refining slag was designed after careful calculations of the liquid phase region,slag-metal equilibrium,surface tension,viscosity,deoxidation capability and sulfur distribution ratio.After refining with our designed slag,the content of impurities and the number density of inclusions in a representative Fe_(83)Si_(2)B_(15)(at.%)amor-phous alloy were significantly reduced.Moreover,the glass-forming ability(GFA)of the alloy was also enhanced,enabling the preparation of amorphous ribbons with a lower cooling rate.Based on the impu-rities in Fe-based amorphous alloys as well as the calculated oxide and sulfide free energy diagrams,CaO,SiO_(2),Al_(2)O_(3) oxides and CaS,TiS,MnS sulfides will form in the master alloy.The high melting point in-clusions in the melt are generally removed via a floatation-separation-absorption process and the Mn,Ti,S impurities are removed via slag-metal interface reactions during refining.As for the detrimental effect of inclusions on glass formation,the small lattice disregistry between Ti,Mn-containing inclusions and primaryα-Fe gains reveal that these inclusions are effective in promoting the heterogeneous nucleation,and therefore greatly deteriorate the GFA.These findings are important and provide an ideal solution to purifying the Fe-based amorphous alloys by refining and enhancing the GFA for industrial production.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2401703)the National Natural Science Foundation of China(Grant Nos.52177005 and 51871234)the China Postdoctoral Science Foundation(Grant No.2022T150691)。
文摘The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.
基金Beijing Municipal Education Commission (00900054R5004)
文摘Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were characterized simultaneously in this article. The results show that the as-deposited coatings consist of amorphous matrix and some precipitated nanocrystals, while the amorphous fraction and particle deformation as well as crystallization mechanism are significantly sensitive to the spraying parameters. The amorphous coatings express high microhardness and excellent wear resistance under dry frictional wear condition, which attributes to the inherent characteristic of amorphous phase and the dispersion strengthening of precipitated nanocrystals. The dominant wear mechanism of the amorphous coatings is fatigue wear accompanying with oxidative wear. In addition, the microhardness and wear resistance of the amorphous coatings were improved by optimizing spraying parameters, owing to the effect of both structural character and proper proportional of amorphous and nanocrystals fraction.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51271081 and 51301072)partially supported by the Key Fundamental Research Project from Shenzhen Research Council (No. JC201105170745A)
文摘In this study,a few Fe-based amorphous matrix composite coatings reinforced with various portions(4,8 and16 vol.%) of 31 6L stainless steel powders have been successfully produced through high velocity oxy-fuel(HVOF) spraying.The microstructure of the composite coatings was systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The main structure of composite coatings remained amorphous while 31 6L stainless steel splats were distributed homogeneously in the amorphous matrix and well connected with surrounding amorphous phase.Bonding strength of coatings to the substrate was determined by 'pull-off' tensile tests.The results revealed that the31 6L stainless steel phase effectively improved the bonding strength of amorphous coatings,which is mainly contributed by the strong metallurgical bonding between stainless steel and amorphous splats.The addition of31 6L stainless steel also enhanced the ductility and fracture resistance of the coatings due to the ductile stainless steel phases,which can arrest crack propagation and increase energy dissipation.
基金supported by the National Hi-Tech Research and Development Program (Grant No.2001AA327030)Science and Technology Program of Beijing (Grant No.D0405003040121)
文摘Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.