The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showe...The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-AI4(Fe,Mn)Si2 phase and long needle-like β-A15(Fe,Mn)Si phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-AI5(Fe,Mn)Si phase decrease and the plate-like δ-A14(Fe,Mn)Si2 phase becomes much coarser. After USV treatment, the Fe- containing compounds in the alloys are refined and exist mainly as δ-AI4(Fe,Mn)Si2 particles with an average grain size of about 20μm, and only a small amount of β-AI5(Fe,Mn)Si phase remains. With USV treatment, the ultimate tensile strengths (UTS) of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 ℃ are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.展开更多
A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-frame...A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-framework iron(III) in Fe-HMS material.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semicond...Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.展开更多
The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were ex...The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were examined using scanning electron microscopy(SEM) with energy-dispersive X-ray spectroscopy(EDX). A new method of electron probe microanalysis(EPMA) map scanning was used to analyze the Sr distribution, which gave quantitative results covering more Si particles. EPMA map scanning, together with SEM with EDX, was also used in analyzing the distribution of Fe phases. Results show that Fe-containing phase was related to the unmodified Si particles in samples with partial modification failure and the plate-like Si phases in samples without modification failure. Such a relationship was further confirmed by the microstructure observation.In conclusion, a partial failure of Sr-modification can be caused by both slow cooling rate and Fe-containing phases.展开更多
Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous...Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous for their excellent CMAS resistance.In this study,the characteristics of Fe-containing environmental sediments(CMAS-Fe)and their corrosiveness to Gd_(2)Zr_(2)O_(7)coatings were investigated.Four types of CMAS-Fe glass with different Fe contents were fabricated.Their melting points were measured to be 1322–1344℃,and the high-temperature viscosity showed a decreasing trend with increasing Fe contents.The corrosion behavior of four types of CMAS-Fe to Gd_(2)Zr_(2)O_(7)coatings at 1350℃was investigated.At the initial corrosion stage(0.1 h),anorthite was precipitated in CMAS-Fe with a high Ca:Si ratio,while Fe-garnet was formed in the melt with the highest Fe content.Prolonging the corrosion time resulted in the formation of a reaction layer,which exhibited an interpenetrating network composed of Gd-oxyapatite,ZrO_(2),and residual CMAS-Fe.Some spinel was precipitated within the reaction layer.After 1 h or even longer time,the reaction layers tended to be stable and compact,which had comparable hardness and fracture toughness to those of Gd_(2)Zr_(2)O_(7)coatings.Under the cyclic CMAS-Fe attack,the residual CMAS-Fe in the interpenetrating network provided a pathway for the redeposited CMAS-Fe infiltration,resulting in the continuous growth of the reaction layer.As a result,the Gd_(2)Zr_(2)O_(7)coatings had a large consumption in the thickness,degrading the coating performance.Therefore,the Gd_(2)Zr_(2)O_(7)coatings exhibit unsatisfactory corrosion resistance to CMAS-Fe attack.展开更多
Single-particle aerosol mass spectrometry was used to study the characteristics of Fecontaining particles during winter in Chengdu,southwest China.The mass concentrations of PM_(2.5)and PM_(10)during the study period ...Single-particle aerosol mass spectrometry was used to study the characteristics of Fecontaining particles during winter in Chengdu,southwest China.The mass concentrations of PM_(2.5)and PM_(10)during the study period were 64±38 and 89±49μg/m~3,respectively,and NO_(2)and particulate matter were high compared with most other regions of China.The Fecontaining particles were divided into seven categories with different mass spectra,sources and aging characteristics.The highest contribution was from Fe mixed with carbonaceous components(Fe-C,23.1%)particles.Fe was more mixed with sulfate than nitrate and therefore the contribution of Fe mixed with sulfate(Fe-S,20.7%)particles was higher than that of Fe mixed with nitrate(Fe-N,12.5%)particles.The contributions from Fe-containing particles related to primary combustion were high in the small particle size range,whereas aged Fecontaining particles and dust-related particles were mostly found in the coarse particle size range.The air masses mainly originated from the west and east of Chengdu,and the corresponding PM_(2.5)concentrations were 79±36 and 55±36μg/m~3,respectively.The west and east air masses showed stronger contributions of Fe-containing particles related to biomass burning(Fe-B)and fossil fuel combustion(Fe-C and Fe-S)particles,respectively.The southwest area contributed the most Fe-containing particles.Future assessments of the effects of Fe-containing particles during heavy pollution period should pay more attention to Fe-C and Fe-S particles.Emission-reduction of Fe-containing particles should consider both local emissions and short-distance transmission from the surrounding areas.展开更多
In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s ...In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s alloys were studied systematically. To make component uniform and operation easy, uniform design (UD) method was introduced into the study of composition optimization of Co-free Fe-containing ABs-type alloys for the first time. X-ray diffraction (XRD) results showed that the designed alloys were of single CaCus-type structure phase. The replacement of Fe had a severe effect on electrochemical capacity, and the substitution of Fe and A1 had a synergetic action among the unit cell volume, cycling stability and high rate discharge property. Interestingly, it was found that the hydrogen storage alloys with excessively high plateau pressure showed a tilted line in Nyquist plot instead of the semicircle, and the current decayed rapidly to near zero at the beginning of the step in constant potential step (CPS), indicating that electrochemical impedance spectra (EIS) and CPS cannot accurately measure the electrochemical kinetics process of the hydrogen storage alloys with excessively high plateau pressure.展开更多
The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa ci...The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS,STXM,and NEXAFS spectroscopy.After careful examination of 3387single particles,the results showed that Fe should be one of the most frequent metal elements.The Fe-containing single particles in irregular shape and micrometer size was about7.8%and might be mainly from local sources.Meanwhile,the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide.Interestingly,the core-shell structure of iron-containing particles were about 38.8%and might be present as single-,dual-or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5,10.5,2.9 and 1.2,respectively.Meanwhile,iron and manganese were found to coexist with identical distributions in the single particles,which might induce a synergistic effect between iron and manganese in catalytic oxidation.Finally,the solid spherical structure of Fe-containing particles without an external layer were about 53.4%.The elements of Fe and Mn were co-existed,and might be presented as iron oxide-manganese oxide-silica composite.Moreover,the ferrous and ferric forms of iron might be co-existed.Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.展开更多
Serious center segregation greatly limits the application of twin-roll casting(TRC)technology for produc-ing 6xxx alloy strips.Herein,Al-0.9Mg-0.6Si-0.2Cu-0.1Fe(wt.%,6061)strips with different thicknesses were fabrica...Serious center segregation greatly limits the application of twin-roll casting(TRC)technology for produc-ing 6xxx alloy strips.Herein,Al-0.9Mg-0.6Si-0.2Cu-0.1Fe(wt.%,6061)strips with different thicknesses were fabricated by TRC,and we found that the center segregation was well relieved with the thick-ness increased from 3 mm to 4 mm.To reveal the mechanisms of mitigation of center segregation in the 4 mm strip,various techniques including solidification simulation,crystallographic calculation,elec-tron backscatter diffraction(EBSD),and electron probe micro-analyzer(EPMA)were utilized.The re-sults disclosed that the Fe-containing phase in the 3 mm strip wasπ-AlFeMgSi,while the counterpart in the 4 mm strip wasα-AlFeSi.Theα-AlFeSi could serve as nucleation substrates for Mg_(2)Si and Q-AlCuMgSi phases,thus promoting the uniform distribution of elements and preventing the accumulation of phases in the center region.Three matching planes between theα-AlFeSi and Q/Mg_(2)Si were exam-ined as:(1120)_(α-AlFeSi)//(0001)_(Q),(0001)_(α-AlFeSi)//(110)_(Mg2Si),and(1120)_(α-AlFeSi)//(110)_(Mg2Si).Meanwhile,the smaller roll separating force during the TRC process in the 4 mm strip could weaken the force-induced liquid flow behavior in the semi-solid region,which is the other reason for the alleviation of center seg-regation.Owing to the elimination of the center segregation,a more excellent fracture elongation was achieved in the as-homogenized 4 mm strip(∼29%)compared with the counterpart of the 3 mm strip(∼20%).This work may provide a strategy to eliminate the center segregation,thus further promoting the application of TRC process and producing high-performance Al alloy strips efficiently.展开更多
Zeolite L with Fe in lattice position is prepared from the gel with Fe/(Fe+Al) ratio up to 0.4 using ferric nitrate as Fe source. The incorporation of Fe(Ⅲ) in framework is characterized by XRD, IR, TG/DTA, BET and M...Zeolite L with Fe in lattice position is prepared from the gel with Fe/(Fe+Al) ratio up to 0.4 using ferric nitrate as Fe source. The incorporation of Fe(Ⅲ) in framework is characterized by XRD, IR, TG/DTA, BET and Mossbauer spectroscopy. Zeolite L is destabilized by Fe(Ⅲ) in framework and the reduction of Fe(Ⅲ) in framework of (Al,Fe )KL was first reported.展开更多
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金funded by Project 51275183 supported by the National Natural Science Foundation of Chinaby the National Basic Research Program of China(973Program)(No.2012CB619600)
文摘The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-AI4(Fe,Mn)Si2 phase and long needle-like β-A15(Fe,Mn)Si phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-AI5(Fe,Mn)Si phase decrease and the plate-like δ-A14(Fe,Mn)Si2 phase becomes much coarser. After USV treatment, the Fe- containing compounds in the alloys are refined and exist mainly as δ-AI4(Fe,Mn)Si2 particles with an average grain size of about 20μm, and only a small amount of β-AI5(Fe,Mn)Si phase remains. With USV treatment, the ultimate tensile strengths (UTS) of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 ℃ are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.
文摘A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-framework iron(III) in Fe-HMS material.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (No.62074014)the Xiaomi Scholar project。
文摘Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
基金supported by the International Science & Technology Cooperation Program of China(No.2015DFR50470)
文摘The influence of cooling rate and Fe-containing phases on Sr-modification of Si phases in hypoeutectic Al-Si alloys, a problem with great industrial importance, was investigated. The microstructures of samples were examined using scanning electron microscopy(SEM) with energy-dispersive X-ray spectroscopy(EDX). A new method of electron probe microanalysis(EPMA) map scanning was used to analyze the Sr distribution, which gave quantitative results covering more Si particles. EPMA map scanning, together with SEM with EDX, was also used in analyzing the distribution of Fe phases. Results show that Fe-containing phase was related to the unmodified Si particles in samples with partial modification failure and the plate-like Si phases in samples without modification failure. Such a relationship was further confirmed by the microstructure observation.In conclusion, a partial failure of Sr-modification can be caused by both slow cooling rate and Fe-containing phases.
基金the National Natural Science Foundation of China(Grant No.52272070)National Science and Technology Major Project(Grant No.J2022-VI-0009-0040).
文摘Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous for their excellent CMAS resistance.In this study,the characteristics of Fe-containing environmental sediments(CMAS-Fe)and their corrosiveness to Gd_(2)Zr_(2)O_(7)coatings were investigated.Four types of CMAS-Fe glass with different Fe contents were fabricated.Their melting points were measured to be 1322–1344℃,and the high-temperature viscosity showed a decreasing trend with increasing Fe contents.The corrosion behavior of four types of CMAS-Fe to Gd_(2)Zr_(2)O_(7)coatings at 1350℃was investigated.At the initial corrosion stage(0.1 h),anorthite was precipitated in CMAS-Fe with a high Ca:Si ratio,while Fe-garnet was formed in the melt with the highest Fe content.Prolonging the corrosion time resulted in the formation of a reaction layer,which exhibited an interpenetrating network composed of Gd-oxyapatite,ZrO_(2),and residual CMAS-Fe.Some spinel was precipitated within the reaction layer.After 1 h or even longer time,the reaction layers tended to be stable and compact,which had comparable hardness and fracture toughness to those of Gd_(2)Zr_(2)O_(7)coatings.Under the cyclic CMAS-Fe attack,the residual CMAS-Fe in the interpenetrating network provided a pathway for the redeposited CMAS-Fe infiltration,resulting in the continuous growth of the reaction layer.As a result,the Gd_(2)Zr_(2)O_(7)coatings had a large consumption in the thickness,degrading the coating performance.Therefore,the Gd_(2)Zr_(2)O_(7)coatings exhibit unsatisfactory corrosion resistance to CMAS-Fe attack.
基金supported by the Scientific Research Project (No.17ZB0484)of Sichuan Provincial Department of EducationScientific Research Project (No.2021ZKQN004)of Southwest Medical University+1 种基金National Natural Science Foundation of China (No.41805095)Sichuan Science and Technology Program (No.2019YFS0476)。
文摘Single-particle aerosol mass spectrometry was used to study the characteristics of Fecontaining particles during winter in Chengdu,southwest China.The mass concentrations of PM_(2.5)and PM_(10)during the study period were 64±38 and 89±49μg/m~3,respectively,and NO_(2)and particulate matter were high compared with most other regions of China.The Fecontaining particles were divided into seven categories with different mass spectra,sources and aging characteristics.The highest contribution was from Fe mixed with carbonaceous components(Fe-C,23.1%)particles.Fe was more mixed with sulfate than nitrate and therefore the contribution of Fe mixed with sulfate(Fe-S,20.7%)particles was higher than that of Fe mixed with nitrate(Fe-N,12.5%)particles.The contributions from Fe-containing particles related to primary combustion were high in the small particle size range,whereas aged Fecontaining particles and dust-related particles were mostly found in the coarse particle size range.The air masses mainly originated from the west and east of Chengdu,and the corresponding PM_(2.5)concentrations were 79±36 and 55±36μg/m~3,respectively.The west and east air masses showed stronger contributions of Fe-containing particles related to biomass burning(Fe-B)and fossil fuel combustion(Fe-C and Fe-S)particles,respectively.The southwest area contributed the most Fe-containing particles.Future assessments of the effects of Fe-containing particles during heavy pollution period should pay more attention to Fe-C and Fe-S particles.Emission-reduction of Fe-containing particles should consider both local emissions and short-distance transmission from the surrounding areas.
基金Project supported by the Guangdong-Ministry of Education (GD-MOE) Coordination Project of Industry Academic and Research (2008B090500274)Chengdu Key Technologies R&D Program (10GGYB897GX-023)
文摘In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s alloys were studied systematically. To make component uniform and operation easy, uniform design (UD) method was introduced into the study of composition optimization of Co-free Fe-containing ABs-type alloys for the first time. X-ray diffraction (XRD) results showed that the designed alloys were of single CaCus-type structure phase. The replacement of Fe had a severe effect on electrochemical capacity, and the substitution of Fe and A1 had a synergetic action among the unit cell volume, cycling stability and high rate discharge property. Interestingly, it was found that the hydrogen storage alloys with excessively high plateau pressure showed a tilted line in Nyquist plot instead of the semicircle, and the current decayed rapidly to near zero at the beginning of the step in constant potential step (CPS), indicating that electrochemical impedance spectra (EIS) and CPS cannot accurately measure the electrochemical kinetics process of the hydrogen storage alloys with excessively high plateau pressure.
基金supported by the National Natural Science Foundation of China(No.21677116)the environmental risk management and control of industrial solid waste recycling process in low temperature and low pressure with anoxic environment(No.2019YFC190410304)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(Nos.2019QZKK0603,2019QZKK0605)the Central Government Supports the Phased Achievement Funding of Local University Projects(ZCKJZ[2022]No.1,[2021]No.1,[2020]No.1 and[2019]No.44)the"High level talents"training program for Postgraduates of Tibet University,2021-GSP-B016。
文摘The Tibetan Plateau,known as the“Third Pole”,is currently in a state of perturbation caused by intensified human activity.In this study,56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS,STXM,and NEXAFS spectroscopy.After careful examination of 3387single particles,the results showed that Fe should be one of the most frequent metal elements.The Fe-containing single particles in irregular shape and micrometer size was about7.8%and might be mainly from local sources.Meanwhile,the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide.Interestingly,the core-shell structure of iron-containing particles were about 38.8%and might be present as single-,dual-or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5,10.5,2.9 and 1.2,respectively.Meanwhile,iron and manganese were found to coexist with identical distributions in the single particles,which might induce a synergistic effect between iron and manganese in catalytic oxidation.Finally,the solid spherical structure of Fe-containing particles without an external layer were about 53.4%.The elements of Fe and Mn were co-existed,and might be presented as iron oxide-manganese oxide-silica composite.Moreover,the ferrous and ferric forms of iron might be co-existed.Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.
基金financially supported by the National Natural Science Foundation of China(Nos.51790483,51790485,51901029,and U2241232)financial support came from The Sci-ence and Technology Development Program of Jilin Province(Nos.20200401030GX,20200201002JC,and 20200401025GX).
文摘Serious center segregation greatly limits the application of twin-roll casting(TRC)technology for produc-ing 6xxx alloy strips.Herein,Al-0.9Mg-0.6Si-0.2Cu-0.1Fe(wt.%,6061)strips with different thicknesses were fabricated by TRC,and we found that the center segregation was well relieved with the thick-ness increased from 3 mm to 4 mm.To reveal the mechanisms of mitigation of center segregation in the 4 mm strip,various techniques including solidification simulation,crystallographic calculation,elec-tron backscatter diffraction(EBSD),and electron probe micro-analyzer(EPMA)were utilized.The re-sults disclosed that the Fe-containing phase in the 3 mm strip wasπ-AlFeMgSi,while the counterpart in the 4 mm strip wasα-AlFeSi.Theα-AlFeSi could serve as nucleation substrates for Mg_(2)Si and Q-AlCuMgSi phases,thus promoting the uniform distribution of elements and preventing the accumulation of phases in the center region.Three matching planes between theα-AlFeSi and Q/Mg_(2)Si were exam-ined as:(1120)_(α-AlFeSi)//(0001)_(Q),(0001)_(α-AlFeSi)//(110)_(Mg2Si),and(1120)_(α-AlFeSi)//(110)_(Mg2Si).Meanwhile,the smaller roll separating force during the TRC process in the 4 mm strip could weaken the force-induced liquid flow behavior in the semi-solid region,which is the other reason for the alleviation of center seg-regation.Owing to the elimination of the center segregation,a more excellent fracture elongation was achieved in the as-homogenized 4 mm strip(∼29%)compared with the counterpart of the 3 mm strip(∼20%).This work may provide a strategy to eliminate the center segregation,thus further promoting the application of TRC process and producing high-performance Al alloy strips efficiently.
基金Project supported by the National Natural Science Foundation of China.
文摘Zeolite L with Fe in lattice position is prepared from the gel with Fe/(Fe+Al) ratio up to 0.4 using ferric nitrate as Fe source. The incorporation of Fe(Ⅲ) in framework is characterized by XRD, IR, TG/DTA, BET and Mossbauer spectroscopy. Zeolite L is destabilized by Fe(Ⅲ) in framework and the reduction of Fe(Ⅲ) in framework of (Al,Fe )KL was first reported.