The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunaue...The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller N2 adsorption-desorption analyses and UV-vis diffuses reflectance spectroscopy. The Fe-doped Cu O sample shows higher adsorption capacity and photocatalytic activity for xanthate degradation than pure Cu O under visible light irradiation. In addition, the adsorption process is found to fit Langmuir isotherms and pseudo-second-order kinetics. The the first order kinetic Langmuir Hinshelwood model was used to study the reaction kinetics of photocatalytic degradation, and the apparent rate constant( k) was calculated. The value of k for Fe-doped Cu O is 1.5 times that of pure Cu O. The higher photocatalytic activity of Fe-doped Cu O is attributed to higher specific surface area together with stronger visible light absorption.展开更多
To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-dop...To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.展开更多
The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire ...The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire (001) substrate. Appropriate ethyl-cellulose (EC) and terpineol are useful for the formation of Fe-doped CuA102 films. X-ray diffraction (XRD) revealed the growth of pure delafossite CuA102 phase ruled out elemental metallic Fe clusters in all the Fe incorporated CuA102 films. The existence of ferromagnetism at room temperature is evidenced by well-defined hysteresis loops. Specially, the saturation magnetization (Ms) values at room temperature have been monotonously enhanced with the increase of Fe composition from 1% to 5%.展开更多
We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-E...We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.展开更多
The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low ...The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.展开更多
In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after ...In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after calcination process. Analysis by both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that Fe atoms were incorporated in TiO2 as Ti-O-Fe linkages. One significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. The Fe-doped TiO2 powder exhibited photocatalytic activity for the degradation of NOx under visible light irradiation. The sample mixed with 0.2 at% Fe3+and calcined at 600 ℃ showed the best photocatalytic activity.展开更多
Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the ...Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the film.No secondary phase was detected.Resonant photoemission spectroscopy(RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band.A strong resonant effect at a photon energy of 710 eV is observed.Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~8 eV.There are no electronic states related to Fe near the Fermi level.Magnetic measurements reveal a typical superparamagnetic property at room temperature.The absence of electronic states related to Fe near the Fermi level and the high quality of the film,with few defects,provide little support to ferromagnetism.展开更多
High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.Accord...High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.According to the observation of surface morphology,the root mean-square roughness of the samples increases slightly with the increase of doping content.All of the prepared samples are in cubic zinc blende structure of Zn S.Transmission spectrum confirms a more obvious dip near 3μm with higher dopant concentration and it can be attributed to the typical^(5)E→^(5)T_(2)transition of Fe^(2+).Fe-doped Zn S film is also successfully used for Q-switched Er:ZBLAN fiber laser.展开更多
The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-dop...The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-doped CoP prisms (Fe-CoP) via ion exchange of cobalt acetate hydroxide with [Fe(CN)_(6)]^(3-) and phosphorization-induced transformation of CoFe-PBA (Co/Fe-containing prussian blue analogue) prisms in N2 atmosphere. The obtained Fe-CoP not only inherits the hollow prism-like morphology of CoFe-PBA, but also forms rich mesoporous channel. The Fe-CoP prisms exhibit extraordinary OER performances in 1.0 M KOH, with a low overpotential of 236 mV to deliver a current density of 10 mA cm^(−2) and a low Tafel slope of 32.9 mV dec^(–1). Moreover, the presented electrocatalyst shows good long-term operating durability and activity. The XPS and TEM analysis confirm that Fe-CoP has undergone surface reconstruction in the process of electrocatalytic OER, and the in situ formed oxides and oxyhydroxides are the real active species to boost OER. This work provides a promising pathway to the design and synthesis of efficient and robust electrocatalysts with hierarchical hollow structure for boosting OER.展开更多
The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were be...The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.展开更多
Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray ...Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.展开更多
Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a s...Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a sustainable approach to both eliminating NO_(3)^(-)and generating valuable ammonia(NH_(3)).Nevertheless,the reduction reaction of NO_(3)^(-)(NO_(3)^(-)RR),involving 8-electron transfer process,is intricate,necessitating highly efficient electrocatalysts to facilitate the conversion of NO_(3)^(-)to NH_(3).In this study,Fe-doped Co_(3)O_(4) nanowire strutted three-dimensional(3D)pinewood-derived carbon(Fe-Co_(3)O_(4)/PC)is proposed as a high-efficiency NO_(3)^(-)RR electrocatalyst for NH_(3) production.Operating within 0.1 M NaOH containing NO_(3)^(-),Fe-Co_(3)O_(4)/PC demonstrates exceptional performance,obtain an impressively large NH_(3) yield of 0.55 mmol·h^(-1)·cm^(-2) and an exceptionally high Faradaic efficiency of 96.5%at-0.5 V,superior to its Co_(3)O_(4)/PC counterpart(0.2 mmol·h^(-1)·cm^(-2),73.3%).Furthermore,the study delves into the reaction mechanism of Fe-Co_(3)O_(4) for NO_(3)^(-)RR through theoretical calculations.展开更多
Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous f...Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous framework Co-metal-organic framework(Co-MOF)containing two distinct secondary building units(SBUs):an anionic[Co_(2)(μ_(2)-OH)(COO)_(4)(H_(2)O)]and a neutral[CoN_(2)(COO)_(2)].Notably,within the anionic SBUs,the coordinated water molecules induce the generation of divergent unsaturated Co(Ⅱ)centers in the unidirectional porous channels,thereby creating open metal sites.The adsorption performance of Co-MOF towards pure component gases was systematically investigated.The results demonstrated that Co-MOF exhibits superior adsorption capacity for C_(2)-C_(3) hydrocarbons compared to CH_(4),which offers the potential for efficient adsorption and separation of CH_(4) from C_(2)-C_(3) hydrocarbons.The gas selectivity separation ratios of Co-MOF for C_(2)H_(6)/CH_(4) and C_(3)H_8/CH_(4) were calculated using the ideal adsorbed solution theory method at 273/298 K and 0.1 MPa.The results revealed that Co-MOF achieved remarkable equilibrium separation selectivity for CH_(4) and C_(2)-C_(3) hydrocarbon gases among non-modified MOFs,signifying the potential of the synthesized Co-MOF for efficient recovery and purification of CH_(4) from C_(2)-C_(3) hydrocarbons.Breakthrough experiments further demonstrate the ability of Co-MOF to purify methane from C_(2)-C_(3) hydrocarbons in practical gas separation scenarios.Additionally,molecular simulation calculations further substantiate the propensity of anionic SBUs to interact with C_(2)-C_(3) hydrocarbon compounds.This study provides a novel paradigm for the development of porous MOF materials in the application of gas mixture separation.展开更多
Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,larg...Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,large volume variation,and significant aggregation of NiSe_(2)during sodiation/desodiation remain significant obstacles to its application.Herein,we report flower-like Fe-doped NiSe_(2)/C hybrid spheres(denoted as Fe-NiSe_(2)/C)fabricated by a glucose intercalation strategy for efficient sodium storage.These Fe-NiSe_(2)/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe_(2)nanoparticles.In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe2 nanoparticles can provide ac-celerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe_(2)and carbon nanosheets as well as maintain structural integrity by alleviating volume variation.Consequently,the optimal anode of the Fe-NiSe_(2)/C hybrid spheres delivered a high discharge capacity of 415 mAh g^(-1)at 0.5 A g^(-1),outstanding rate capability(243 mAh g^(-1)at 5 A g^(-1)),and significantly enhanced cycling stability(388 mAh g^(-1)at 1 A g^(-1)over 200 cycles).This work offers an efficient and valu-able strategy for realizing tailored heteroatom doping in transition metal selenides,accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.展开更多
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th...A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.展开更多
基金Project(51102285)supported by the National Natural Science Foundation of China
文摘The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller N2 adsorption-desorption analyses and UV-vis diffuses reflectance spectroscopy. The Fe-doped Cu O sample shows higher adsorption capacity and photocatalytic activity for xanthate degradation than pure Cu O under visible light irradiation. In addition, the adsorption process is found to fit Langmuir isotherms and pseudo-second-order kinetics. The the first order kinetic Langmuir Hinshelwood model was used to study the reaction kinetics of photocatalytic degradation, and the apparent rate constant( k) was calculated. The value of k for Fe-doped Cu O is 1.5 times that of pure Cu O. The higher photocatalytic activity of Fe-doped Cu O is attributed to higher specific surface area together with stronger visible light absorption.
基金Project(60661001) supported by the National Natural Science Foundation of China
文摘To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.
基金Funded by the National Natural Science Foundation of China(No.61077074)
文摘The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire (001) substrate. Appropriate ethyl-cellulose (EC) and terpineol are useful for the formation of Fe-doped CuA102 films. X-ray diffraction (XRD) revealed the growth of pure delafossite CuA102 phase ruled out elemental metallic Fe clusters in all the Fe incorporated CuA102 films. The existence of ferromagnetism at room temperature is evidenced by well-defined hysteresis loops. Specially, the saturation magnetization (Ms) values at room temperature have been monotonously enhanced with the increase of Fe composition from 1% to 5%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60925016)
文摘We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the National Natural Science Foundation of China(Grant No.51672163)the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education),China(Grant No.JG1401)
文摘The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.
基金Supported by National Natural Science Foundation of China (No.20276053) .
文摘In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after calcination process. Analysis by both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that Fe atoms were incorporated in TiO2 as Ti-O-Fe linkages. One significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. The Fe-doped TiO2 powder exhibited photocatalytic activity for the degradation of NOx under visible light irradiation. The sample mixed with 0.2 at% Fe3+and calcined at 600 ℃ showed the best photocatalytic activity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775126 and 10975138)
文摘Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the film.No secondary phase was detected.Resonant photoemission spectroscopy(RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band.A strong resonant effect at a photon energy of 710 eV is observed.Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~8 eV.There are no electronic states related to Fe near the Fermi level.Magnetic measurements reveal a typical superparamagnetic property at room temperature.The absence of electronic states related to Fe near the Fermi level and the high quality of the film,with few defects,provide little support to ferromagnetism.
基金the National Natural Science Foundation of China(Grant No.U1730141)。
文摘High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.According to the observation of surface morphology,the root mean-square roughness of the samples increases slightly with the increase of doping content.All of the prepared samples are in cubic zinc blende structure of Zn S.Transmission spectrum confirms a more obvious dip near 3μm with higher dopant concentration and it can be attributed to the typical^(5)E→^(5)T_(2)transition of Fe^(2+).Fe-doped Zn S film is also successfully used for Q-switched Er:ZBLAN fiber laser.
基金Financial support from the National Natural Science Fundation of China(no.22072018,21703040,51873037 and 21973013).
文摘The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-doped CoP prisms (Fe-CoP) via ion exchange of cobalt acetate hydroxide with [Fe(CN)_(6)]^(3-) and phosphorization-induced transformation of CoFe-PBA (Co/Fe-containing prussian blue analogue) prisms in N2 atmosphere. The obtained Fe-CoP not only inherits the hollow prism-like morphology of CoFe-PBA, but also forms rich mesoporous channel. The Fe-CoP prisms exhibit extraordinary OER performances in 1.0 M KOH, with a low overpotential of 236 mV to deliver a current density of 10 mA cm^(−2) and a low Tafel slope of 32.9 mV dec^(–1). Moreover, the presented electrocatalyst shows good long-term operating durability and activity. The XPS and TEM analysis confirm that Fe-CoP has undergone surface reconstruction in the process of electrocatalytic OER, and the in situ formed oxides and oxyhydroxides are the real active species to boost OER. This work provides a promising pathway to the design and synthesis of efficient and robust electrocatalysts with hierarchical hollow structure for boosting OER.
文摘The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921101,2014CB921103 and2013CB922103the National Natural Science Foundation of China under Grant Nos 11274003,61176088 and 61274102+1 种基金the Program for the New Century Excellent Talents in University under Grant No NCET-11-0240the PAPD Project,and the Fundamental Research Funds for the Central Universities
文摘Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
文摘Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a sustainable approach to both eliminating NO_(3)^(-)and generating valuable ammonia(NH_(3)).Nevertheless,the reduction reaction of NO_(3)^(-)(NO_(3)^(-)RR),involving 8-electron transfer process,is intricate,necessitating highly efficient electrocatalysts to facilitate the conversion of NO_(3)^(-)to NH_(3).In this study,Fe-doped Co_(3)O_(4) nanowire strutted three-dimensional(3D)pinewood-derived carbon(Fe-Co_(3)O_(4)/PC)is proposed as a high-efficiency NO_(3)^(-)RR electrocatalyst for NH_(3) production.Operating within 0.1 M NaOH containing NO_(3)^(-),Fe-Co_(3)O_(4)/PC demonstrates exceptional performance,obtain an impressively large NH_(3) yield of 0.55 mmol·h^(-1)·cm^(-2) and an exceptionally high Faradaic efficiency of 96.5%at-0.5 V,superior to its Co_(3)O_(4)/PC counterpart(0.2 mmol·h^(-1)·cm^(-2),73.3%).Furthermore,the study delves into the reaction mechanism of Fe-Co_(3)O_(4) for NO_(3)^(-)RR through theoretical calculations.
基金supported by the National Natural Science Foundation of China(21401099)the Natural Science Foundation of Shanxi Province(202203021212331)+3 种基金Science and Technology Innovation Project of Colleges and Universities of Shanxi Province(2022L532)the National Natural Science Foundation of Anhui Province(2008085MB32 and KJ2021ZD0073)Natural Science Foundation of Shandong Province(ZR2021QB159)supported by the Talent Program Foundation of Dezhou University(2021xjrc102)。
文摘Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous framework Co-metal-organic framework(Co-MOF)containing two distinct secondary building units(SBUs):an anionic[Co_(2)(μ_(2)-OH)(COO)_(4)(H_(2)O)]and a neutral[CoN_(2)(COO)_(2)].Notably,within the anionic SBUs,the coordinated water molecules induce the generation of divergent unsaturated Co(Ⅱ)centers in the unidirectional porous channels,thereby creating open metal sites.The adsorption performance of Co-MOF towards pure component gases was systematically investigated.The results demonstrated that Co-MOF exhibits superior adsorption capacity for C_(2)-C_(3) hydrocarbons compared to CH_(4),which offers the potential for efficient adsorption and separation of CH_(4) from C_(2)-C_(3) hydrocarbons.The gas selectivity separation ratios of Co-MOF for C_(2)H_(6)/CH_(4) and C_(3)H_8/CH_(4) were calculated using the ideal adsorbed solution theory method at 273/298 K and 0.1 MPa.The results revealed that Co-MOF achieved remarkable equilibrium separation selectivity for CH_(4) and C_(2)-C_(3) hydrocarbon gases among non-modified MOFs,signifying the potential of the synthesized Co-MOF for efficient recovery and purification of CH_(4) from C_(2)-C_(3) hydrocarbons.Breakthrough experiments further demonstrate the ability of Co-MOF to purify methane from C_(2)-C_(3) hydrocarbons in practical gas separation scenarios.Additionally,molecular simulation calculations further substantiate the propensity of anionic SBUs to interact with C_(2)-C_(3) hydrocarbon compounds.This study provides a novel paradigm for the development of porous MOF materials in the application of gas mixture separation.
基金the financial support provided by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY21E020010)National Natural Science Foundation of China(Grant No.52102315)+1 种基金Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SZ-TD006)Science and Technology Program of Zhejiang University Institute of Wenzhou(Grant No.XMGLKJZX-202206).
文摘Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,large volume variation,and significant aggregation of NiSe_(2)during sodiation/desodiation remain significant obstacles to its application.Herein,we report flower-like Fe-doped NiSe_(2)/C hybrid spheres(denoted as Fe-NiSe_(2)/C)fabricated by a glucose intercalation strategy for efficient sodium storage.These Fe-NiSe_(2)/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe_(2)nanoparticles.In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe2 nanoparticles can provide ac-celerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe_(2)and carbon nanosheets as well as maintain structural integrity by alleviating volume variation.Consequently,the optimal anode of the Fe-NiSe_(2)/C hybrid spheres delivered a high discharge capacity of 415 mAh g^(-1)at 0.5 A g^(-1),outstanding rate capability(243 mAh g^(-1)at 5 A g^(-1)),and significantly enhanced cycling stability(388 mAh g^(-1)at 1 A g^(-1)over 200 cycles).This work offers an efficient and valu-able strategy for realizing tailored heteroatom doping in transition metal selenides,accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.
基金supported by the National Natural Science Foundation of China(21871079,21501052)the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B006)~~
文摘A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.