期刊文献+
共找到8,736篇文章
< 1 2 250 >
每页显示 20 50 100
Defect engineering on BiFeO_(3) through Na and V codoping for aqueous Na-ion capacitors
1
作者 Wenyun Wang Chao Yang +4 位作者 Shangjing Yu Daotong Han Wentao Qi Rui Ling Guangqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期453-463,I0011,共12页
Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp... Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors. 展开更多
关键词 BifeO_(3) Na^(+) storage V doping Oxygen vacancy CAPACITOR
下载PDF
Dielectric polarization in MgFe_(2)O_(4) coating and bulk doping to enhance high-voltage cycling stability of Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2) cathode material
2
作者 Xiaoqian Xu Yizhen Huang +7 位作者 Dan Li Qichang Pan Sijiang Hu Yahao Li Hongqiang Wang Youguo Huang Fenghua Zheng Qingyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期200-211,I0007,共13页
Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_... Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries. 展开更多
关键词 P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2) Mgfe_(2)O_(4) Bulk doping Lattice oxygen evolution P2-O2 phase transformation
下载PDF
Effect of Mn-doping on performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:3
3
作者 翟静 赵敏寿 王丹丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期523-528,共6页
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva... Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+. 展开更多
关键词 lithium ion batteries cathode materials Li3V2(PO4)3 SOL-GEL doping
下载PDF
Fe-doping induced Griffiths-like phase in La_(0.7)Ba_(0.3)CoO_3 被引量:2
4
作者 黄万国 张向群 +3 位作者 李国科 孙阳 李庆安 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期5034-5037,共4页
The effect of Fe-doping on the magnetic properties of the ABO3-type perovskite cobaltites La0.7Ba0.3CoO3(0≤ y≤0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (Tc)... The effect of Fe-doping on the magnetic properties of the ABO3-type perovskite cobaltites La0.7Ba0.3CoO3(0≤ y≤0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (Tc) and the magnetization (M) are greatly suppressed for y ≤0.30 samples, while a distinct increase in Tc for the y=0.40 sample is observed. With the further increase of Fe concentration, Tc increases monotonically. Griffiths-like phases in 0.40≤y ≤0.60 samples are confirmed. The formation of the Griffiths-like phase is ascribed to B-site disordering induced isolation of ferromagnetic (FM) clusters above Tc. 展开更多
关键词 perovskite cobaltites fe doping Griffiths phase
下载PDF
Layered double hydroxide-like Mg_3Al_(1–x)Fe_x materials as supports for Ir catalysts: Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde 被引量:4
5
作者 Weiwei Lin Haiyang Cheng +3 位作者 Xiaoru Li Chao Zhang Fengyu Zhao Masahiko Arai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期988-996,共9页
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ... Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry. 展开更多
关键词 Ir catalyst Layered double hydroxide fe doping Support effect Selective hydrogenation CINNAMALDEHYDE
下载PDF
The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(Ⅲ) 被引量:4
6
作者 Guimei Liu Guohui Dong +1 位作者 Yubin Zeng Chuanyi Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1564-1572,共9页
Element doping is a simple and effective method to improve photocatalytic activity of g-C3N4. However, the doping model and mechanism of metal elements are still uncharacterized. In this study, we found that Fe(Ⅲ) ca... Element doping is a simple and effective method to improve photocatalytic activity of g-C3N4. However, the doping model and mechanism of metal elements are still uncharacterized. In this study, we found that Fe(Ⅲ) can be doped into g-C3N4 through the coordination between amidogen and Fe(Ⅲ). After activity tests, it was found that this coordination doping of Fe(Ⅲ) could enhance the Rh B oxidation and Cr(Ⅵ) reduction activities of g-C3N4 in interesting ways, but it is not helpful for the NO-removal performance of g-C3N4. Characterization and calculation results show that the coordination of Fe(Ⅲ) can not only improve the transfer of photogenerated electrons, but it also can passivate the carbon site of triazine rings, which is the active site of NO-removal. This study revealed some doping mechanisms and effect mechanisms of elemental metal in photocatalysis. 展开更多
关键词 doping g-C3N4 PHOTOCATALYSIS feion NO removal
下载PDF
Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3(A=Al,Fe,and Cu) 被引量:1
7
作者 肖利霞 金昭 +6 位作者 夏正才 时丽然 黄俊伟 陈柏蓉 尚翠 魏蒙 龙卓 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期145-149,共5页
The doping effects on the frustration and the magnetic properties in hexagonal compounds ot YMn0.9A0.1O3 (A=A1, Fe and Cu) are investigated. Experimental results indicate that both the non-magnetic and magnetic ion ... The doping effects on the frustration and the magnetic properties in hexagonal compounds ot YMn0.9A0.1O3 (A=A1, Fe and Cu) are investigated. Experimental results indicate that both the non-magnetic and magnetic ion dopants lead to the increase of magnetic moments and the decrease of the absolute value of Curie-Weiss temperature (|θcw|)- Compared with pure YMnOa, the geometrical frustration of YMn0.9 A0. 1O3 is greatly suppressed and the magnetic coupling in that exhibits dopant-dependent. In addition, for the doped YMno.gAo.103, the antiferromagnetic transition temperature (TN) is also suppressed slightly, which shows an abnormal dilution effect and it may be ascribed to the reduction of frustration due to the chemical substitution. 展开更多
关键词 net Effects of doping on the Magnetic Properties and Frustration of Hexagonal YMn O3 A fe AFM AL
下载PDF
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
8
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/CeO2 nano‐rod catalyst doping effect Oxygen vacancy Surface acidity Low‐temperature NH3‐SCR reaction
下载PDF
Concise Strategies to Enhance the High-Rate Performance of Li_(3)VO_(4) Anodes:Cl Doping,Carbon Coating,and Spherical Architecture Design
9
作者 Zongping Zhang Jie Xu +5 位作者 Dongmei Zhang Huijuan Ma Tao Li Ting Xiao Cunyuan Pei Shibing Ni 《Transactions of Tianjin University》 EI CAS 2023年第2期110-119,共10页
The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the d... The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes.Herein,we investigate,for the first time,the Li-ion storage activity in LVO via Cl doping.Moreover,N-doped C coating was simultaneously achieved in the Cl doping process,resulting in synergistically improved reaction kinetics.As a result,the as-prepared Cl-doped Li_(3)VO_(4) coated with N-doped C(Cl-LVO@NC)electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g,which is the highest among all of the LVO-based electrodes.The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles.After 5000 cycles at 4.0 A/g,the discharge capacity can be maintained at 423.2 mAh/g,which is superior to most LVO-based electrodes.The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications. 展开更多
关键词 Li_(3)VO_(4) Cl doping New mechanisms High-rate Li-ion storage
下载PDF
Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs 被引量:2
10
作者 Hailong Wang Jialin Ma +1 位作者 Qiqi Wei Jianhua Zhao 《Journal of Semiconductors》 EI CAS CSCD 2020年第7期33-38,共6页
The Mn doping effects on the gate-tunable transport properties of topological Dirac semimetal Cd3As2 films have been investigated.Mn-doped Cd3As2 films are directly grown on GaAs(111)B substrates by molecular-beam epi... The Mn doping effects on the gate-tunable transport properties of topological Dirac semimetal Cd3As2 films have been investigated.Mn-doped Cd3As2 films are directly grown on GaAs(111)B substrates by molecular-beam epitaxy,during which the single crystal phase can be obtained with Mn concentration less than 2%.Shubnikov-de Haas oscillation and quantum Hall effect are observed at low temperatures,and electrons are found to be the dominant carrier in the whole temperature range.Higher Mn content results in smaller lattice constant,lower electron mobility and larger effective band gap,while the carrier density seems to be unaffected by Mn-doping.Gating experiments show that Shubnikov-de Haas oscillation and quantum Hall effect are slightly modulated by electric field,which can be explained by the variation of electron density.Our results provide useful information for understanding the magnetic element doping effects on the transport properties of Cd3As2 films. 展开更多
关键词 molecular-beam epitaxy Dirac semimetal Cd3As2 film Mn doping quantum transport
下载PDF
Influence of different Fe doping strategies on modulating active sites and oxygen reduction reaction performance of Fe, N-doped carbonaceous catalysts 被引量:1
11
作者 Yang Liu Suqiong He +2 位作者 Bing Huang Ziyan Kong Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期511-520,I0013,共11页
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i... Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries. 展开更多
关键词 Mg-air battery Oxygen reduction reaction Single-atom fe/N/C catalysts fe doping strategies Zeolitic imidazole frameworks
下载PDF
A Study on the Efficiency Gain of CsSnGeI3 Solar Cells with Graphene Doping
12
作者 Mohammed M. Shabat Guillaume Zoppi 《World Journal of Condensed Matter Physics》 2023年第3期90-104,共15页
This paper presents a newly designed ultra-thin, lead-free, and all-inorganic solar cell structure. The structure was optimized using the SCAPS-1D simulator, incorporating solid-state layers arranged as n-graphene/CsS... This paper presents a newly designed ultra-thin, lead-free, and all-inorganic solar cell structure. The structure was optimized using the SCAPS-1D simulator, incorporating solid-state layers arranged as n-graphene/CsSnGeI<sub>3</sub>/p-graphene. The objective was to investigate the potential of utilizing n-graphene as the electron transport layer and p-graphene as the hole transport layer to achieve maximum power conversion efficiency. Various materials for the electron transport layer were evaluated. The optimized cell structure achieved a maximum power conversion efficiency of 20.97%. The proposed solar cell structure demonstrates promising potential as an efficient, inorganic photovoltaic device. These findings provide important insights for developing and optimizing inorganic photovoltaic cells based on CsSnGeI<sub>3</sub>, with n-graphene electron transport layers and p-graphene hole transport layers. 展开更多
关键词 Perovskite Solar Cells Efficiency Gain CsSnGeI3 Solar Cells Graphene doping Photovoltaics Thin-Film Solar Cells Energy Conversion
下载PDF
EFFECTS OF In_2O_3 DOPING AND SINTERING TEMPERATURE ON THE ELECTRICAL PROPERTIES OF ZnO VARISTORS 被引量:2
13
作者 Zhao Ruirong Chen Jianxzen Jiang Hanying(Institute of Metallurgical Physicochemistry and Materials, Central SouthUniversity of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第1期13-15,共3页
ZnO varistors are prepared using the 0.1-0.3mm ZnO powders. The effects of the sintering temperature, contents of In2O3 doping on the non-linear properties of ZnO varistors have been investigated. Theresults show that... ZnO varistors are prepared using the 0.1-0.3mm ZnO powders. The effects of the sintering temperature, contents of In2O3 doping on the non-linear properties of ZnO varistors have been investigated. Theresults show that this kind of ZnO powder has a high sintering activity. It is suitable for making the low voltage varistors. The Vc decreases with the increase of sintered temperature, when the In2O3 content is fixed(0. 98 %, mass fraction), and increases with the increase of In2O3 contents when the temperature is steady. 展开更多
关键词 ZnO varistors In_2O_3-doping sintering temperature
下载PDF
Photocatalytic Activity of Nanosized TiO_2 Enhanced by co-doping with Fe^(3+) and Nd^(3+) Ions
14
作者 傅平丰 赵卓 王敬欣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期17-21,共5页
In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was ev... In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction. 展开更多
关键词 titanium dioxide fe3+ ion Nd3+ ion metallic ion doping photocatalytic activity
下载PDF
Ni doping effects in YBa_2Fe_3O_(8+w)
15
作者 Xiaoyu GUAN Yong ZHAO Xiaoqiu JIA 《Journal of Modern Transportation》 2011年第4期247-251,共5页
By doping Ni into YBa2Fe308+w (YBFO) system, we obtained the phase YBa2Fe3-xNixO8+w (YBFNO, x=0, 0.05, 0.10, 0.15, 0.30, 0.50, 1.00). This paper discusses the changes in crystal structural, resistivity and magne... By doping Ni into YBa2Fe308+w (YBFO) system, we obtained the phase YBa2Fe3-xNixO8+w (YBFNO, x=0, 0.05, 0.10, 0.15, 0.30, 0.50, 1.00). This paper discusses the changes in crystal structural, resistivity and magnetoresistivity (MR) of YBFO samples due to the incorporation of transition metal Ni. The results show that Ni substitution for partial Fe in YBFO does not substantially transform the structure of parent phase, but results in tiny changes in the lat- tice parameters. The YBFO crystal with Ni doped is semiconducting. 展开更多
关键词 YBa2fe3Oa+w Ni doping crystal structure MAGNETORESISTIVITY
下载PDF
Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1-yMgyO3 Films
16
作者 ZHANG Wenbo WANG Hua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期888-892,共5页
SrTi1-yMgyO3 films were synthesized through sol-gel method on p^+-Si substrates. The effects of Mg doping concentration on the microstructure, switching behavior and properties of SrTi1-yMgyO3 films were investigated.... SrTi1-yMgyO3 films were synthesized through sol-gel method on p^+-Si substrates. The effects of Mg doping concentration on the microstructure, switching behavior and properties of SrTi1-yMgyO3 films were investigated. All SrTi1-yMgyO3 films are polycrystalline, but the grain becomes coarser, and the number of holes is reduced when the Mg doping content increases from 0.04 to 0.16. SrTi1-yMgyO3 films with different Mg doping concentrations all show bipolar resistive switching behaviors but display some differences in switching properties. When y=0.08, the SrTi1-yMgyO3 films show the largest RHRS/RLRS of 105 and better fatigue endurance after 103 cycles. When y≥0.08, the distribution of Vset and Vreset is narrow, indicating good stability of writing and erasing data for a resistive random access memory. At high-resistance state, the dominant conduction mechanism of SrTi1-yMgyO3 films is the Schottky emission mechanism. However, at low-resistance state, the dominant conduction mechanisms are the filamentary conduction and changes to space charge limited current when y=0.16. 展开更多
关键词 resistive SWITCHING FILMS SrTi1-yMgyO3 doping CONCENTRATION SOL-GEL
下载PDF
First-principles study of La and Sb-doping effects on electronic structure and optical properties of SrTiO_3
17
作者 贠江妮 张志勇 +1 位作者 闫军锋 邓周虎 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期433-440,共8页
The effects of La and Sb doping on the electronic structure and optical properties of SrTiO3 are investigated by first-principles calculation of the plane wave ultra-soft pseudo-potential based on density functional t... The effects of La and Sb doping on the electronic structure and optical properties of SrTiO3 are investigated by first-principles calculation of the plane wave ultra-soft pseudo-potential based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of SrTiO3, and its structural stability can be improved by La doping. The La^3+ ion fnlly acts as an electron donor in Sr0.875La0.125TiO3 and the Fermi level shifts into the conduction bands (CBs) after La doping. As for SrSb0.125Ti0.87503, there is a distortion near the bottom of the CBs for SrSb0.125Ti0.87503 after Sb doping and an incipient localization of some of the doped electrons trapped in the Ti site, making it impossible to describe the evolution of the density of states (DOS) within the rigid band model. At the same time, the DOSs of the two electron-doped systems shift towards low energies and the optical band gaps are broadened by about 0.4 and 0.6 eV for Sr0.875La0.125TiO3 and SrSb0.125Ti0.87503, respectively. Moreover, the transmittance of SrSb0.125Ti0.87503 is as high as 95% in most of the visible region, which is higher than that of Sr0.875La0.125TiO3(85%). The wide band gap, the small transition probability and the weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the significant optical transparency of SrSb0.125Ti0.875O3. 展开更多
关键词 density functional theory SRTIO3 doping electronic structure
下载PDF
Effect of Molybdenum Doping on Oxygen Permeation Properties and Chemical Stability of SrCo0.8Fe0.2O3-δ
18
作者 宋春林 方曙民 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期445-449,J0002,共6页
The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(... The phase composition, microstructure, thermal expansion coefficients, oxygen permeation properties and chemical stability of SrCo0.8Fe0.2O3-δ (SCFM) were investigated and compared with those of SrCo0.8Fe0.2O3-δ(SCF). Single phase SCFM was successfully prepared by a combined EDTA-citric method. SCFM shows a lower thermal expansion coefficient (24× 10^-6-29× 10^-6/K) than SCF between 500 and 1050 ℃, indicating a more stable structure. SCFM shows a high oxygen permeation flux, although the oxygen flux of SCFM decreases slightly because of Mo dopant. Furthermore, it was demonstrated that the doping of Mo in SCF can prevent the order-disorder transition and improves the chemical stability to CO2. 展开更多
关键词 Oxygen permeation SrCo0.8fe0.2O3 Chemical stability MOLYBDENUM
下载PDF
Effects of Aluminum Doping on the Microstructure and Electrical Properties of ZnO- Pr_6O_(11)-Co_3O_4-MnCO_3-Y_2O_3 Varistor Ceramics
19
作者 王茂华 ZHANG Bo +1 位作者 LI Gang YAO Chao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期246-249,共4页
Abstract: The effect of Al_2O_3 doping on the microstructure and electrical properties of the ZnO- Pr_6O11-CO_3O_4-MnCO_3-Y_2O_3 system was investigated in the range of 0.0-0. lmol%. The results reveal that Al_2O_3 d... Abstract: The effect of Al_2O_3 doping on the microstructure and electrical properties of the ZnO- Pr_6O11-CO_3O_4-MnCO_3-Y_2O_3 system was investigated in the range of 0.0-0. lmol%. The results reveal that Al_2O_3 doping has slight influence on the densification process. The microstructure of the ceramics comprises of ZnO phase, ZnAl_2O_4 spine phase and Pr-rich phases. The addition of Al_2O_3 greatly affects the electrical properties. The varistor voltage (E_1mA/cm^2) of ZPCMYAl samples decreases over a wide range from 5 530 V/cm to 1 844 V/cm with the increasing Al_2O_3 content. The nonlinear exponent(a) increases with the increasing Al_2O_3 content to 0.01mol%, whereas it is decreased by the further doping. The ZPCMYAI-based varistor ceramics with 0.01mol% Al_2O_3 exhibit the best electrical properties, with the nonlinear exponent (ct) attaining the highest value of 33.4 and the lowest leakage current of 2.7 μA. The capacitance-voltage (C-V) measurement shows that the donor density (Nd) at the grain boundaries increase from 1.58×10^18 to 3.15×10^18 cm^-3, the barrier height (Чb) increases from 1.60 to 2.36 eV, and the depletion layer width (t) decreases from 24.9 to 21.6 nm. 展开更多
关键词 MICROSTRUCTURE electrical properties Al_2O_3 doping VARISTORS
下载PDF
Effects of Praseodymium Doping on Conductivity and Oxygen Permeability of Cobalt-Free Perovskite-Type Oxide BaFeO3-δ
20
作者 Bang-zheng Wei Yu Wang +2 位作者 Meng Liu Chen-xi Xu Ji-gui Cheng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第2期191-196,245,246,共8页
Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structur... Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structure of BaFeO3-δ material at room temperature, iron was partially substituted by praseodymium. BaFe1-yPryO3-δ powders were synthesized by a solid state reaction method, and sintered samples were prepared from the synthesized BaFe1-yPryO3-δ powders. X-ray diffraction results reveal that the BaFe1-yPryO3-δ samples remain cubic structure at praseodymium substitution amount of y 0.05, 0.075, 0.1. Scanning electron microscope observation indicates that the sintered samples contain only a small amount of enclosed pores and the grain size of BaFe1-yPryO3-δ increase monotonically with the increase of the praseodymium doping amount, praseodymium doping promotes the grain size growth. Tests of electrical conductivity and oxygen permeation flux show that praseodymium doping improves the conduction properties of BaFe1-yPryO3-δ and BaFe0.9Pr0.1O3-δ composition has an electrical conductivity of 6.5 S/era and an oxygen permeation of 1.112 mL/(cm^2.min) at 900 ℃, respectively. High temperature XRD in- vestigation shows that the crystal structure of BaFe0.975Pr0.025O3-δ membrane completely transform to cubic phase at 700℃. The present test results have shown that partially substitution of Fe by praseodymium in BaFeO3 can stabilize the cubic structure and improve the properties. 展开更多
关键词 Bafe1-yPryO3 Praseodymium doping Cubic perovskite Oxygen perme-ability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部