A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polyprop...A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.展开更多
A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of ...A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.展开更多
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ...A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.展开更多
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de...A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.展开更多
Magnetic-luminescent nanocomposites have obtained a great deal of attention due to their potential applications in magnetic separation of cells, magnetic resonance imaging and luminescence imaging, and so on. Herein, ...Magnetic-luminescent nanocomposites have obtained a great deal of attention due to their potential applications in magnetic separation of cells, magnetic resonance imaging and luminescence imaging, and so on. Herein, a new and facile two-step synthetic strategy was developed to prepare magnetic Fe304 modified single crystalline up- conversion luminescent NaYF4: Yb3+, Er3+ nanocrystals using Fe304 nanoparticles as the seeds. Acting as the "nu- clei" in the reaction, the presence of Fe304 nanoparticles facilitates the formation of up-conversion NaYF4: Yb3+, Er3+ nanocrystals on their surfaces through heterogeneous nucleation process. The structure and properties of these multifunctional nanocrystals were characterized by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), photo luminescence (PL) and X-ray diffraction (XRD). The results revealed that the as-prepared multifunctional nanocrystals show dual distinct properties of up-conversion fluorescent and superpara- magnetism, which were cubic in shape and very uniform in size with an average size ranging 30m40 nm. These unique functionalities could be very attractive for biological systems, and some biological applications such as cell- labelling were also demonstrated.展开更多
Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives...Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives (Al, Cr, Ni, Co, Zr and Mo). Hydrogen storage properties of the samples were investigated. The results show that both Fe and Fe2O3 powder with additive Mo presented excellent catalytic activity and cyclic stability, and their hydrogen producing temperature could be surprisingly decreased. The temperature of forming hydrogen for the Fe2O3-Mo at the rate of 250 μmol·min^-1·Fe-g^-1 could be dramatically decreased from 527 ℃ before addition of Mo to 283 ℃ after addition of Mo in the fourth cycle. The cause for it was probably related to preventing the sinter of the sample particles. In addition, hydrogen storage capacity of the Fe2O3-Mo can reach w=4.5% (72 kg H2/m^3), close to International Energy Agency (IEA) criterion. These show the value of practical application of the Fe2O3-Mo as the promising hydrogen storage material.展开更多
The modified Fe3O4 nanoparticles with the extracted pectin from the cell wall of Azolla filicoloides(FNEP) can remove methyl orange as a watersoluble azo dye from waste water better than Azolla and the extracted pec...The modified Fe3O4 nanoparticles with the extracted pectin from the cell wall of Azolla filicoloides(FNEP) can remove methyl orange as a watersoluble azo dye from waste water better than Azolla and the extracted pectin from Azolla(EPA),alone.It could be due to more crowding the main functional groups of uptake after binding pectin with nanoparticles.Thermodynamic studies showed that adsorption equilibrium constant(KL) and maximum adsorption capacities(Q(max)) were increased with decreasing temperature(exothermic).The maximum uptake capacity(Q(max)) of dye by FNEP in a batch reactor was 0.533,0.498 and 0.446 mmol/g at 5,25 and 50℃,respectively.The enthalpy change(△H) and entropy change(△S) were 15.31 kJ/mol and 0.02434 kJ/mol K,respectively.展开更多
Lithium-sulfur(Li-S)batteries with high energy densities have received increasing attention.However,the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application,whi...Lithium-sulfur(Li-S)batteries with high energy densities have received increasing attention.However,the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application,which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion.To address this issue,a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe)was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP)separator.The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides,while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides.The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved.A large discharge capacity of 1481 mA∙h∙g-1 is achieved at 0.2 C(1 C=1675 mA/g),and a high capacity of 601 mA∙h∙g-1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C.This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides,good wettability to the electrolyte and high catalytic property.展开更多
Magnetite (Fe3O4) has been used for thousands of years as one of the important magnetic materials. The rapid developments of thin film technology in the past few decades attract the attention of material scientists ...Magnetite (Fe3O4) has been used for thousands of years as one of the important magnetic materials. The rapid developments of thin film technology in the past few decades attract the attention of material scientists on the fabrication of magnetite thin films. In this article, we present an overview of recent progress on Fe3O4 thin films. The widely used preparation methods are surveyed, and the effect of sub- strates is discussed. Specifically the modified Fe3O4 thin films exhibit excellent electrical and magnetic properties compared with the pure films. It is noteworthy that modified Fe3O4 thin films can be put into two categories: (1) doped films, where foreign metal ions substitute iron ions at A or B sites: and (2) hybrid films, where magnetite phases are mixed with other materials. Notably, Fe3O4 thin films show great potentials in many applications such as sensors and batteries. It is expected that the investigations of Fe3O4 thin films will give us some breakthroughs in materials science and technology.展开更多
基金supported by the National Natural Science Foundation of China(Grant no.51672075,21271069,51772092,51704106)Science and Technology Program of Hunan Province(Grant no.2015JC3049)
文摘A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.
文摘A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.
基金Supported by the National Natural Science Foundation of China(No.21065001)the Natural Science Foundation of Guangxi Province,China(Nos.0639025,0991084)+2 种基金the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Higher Education Institutions of Guangxi Province,China(No.RC20060703005)the Project of Key Laboratory of Development and Application of Forest Chemicals of Guangxi Province,China(No.GXFC08-06)the Fund of Education Department of Guangxi Province,China(No.200812MS074)
文摘A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.
文摘A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
基金supported by Major Basic Research Programme of Science and Technology Commission of Shanghai Municipality (No. 10JC1403200), Shuguang Talents Programme of Edu- cation Commission of Shanghai Municipality (No. 09SG27), National Natural Science Foundation of China (Nos. 20973059, 91022023, 21076076), Fundamental Research Funds for the Central Universities (No. WJ0913001), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Program for New Century Excel- lent Talents in University (No. NCET-09-0347).
文摘Magnetic-luminescent nanocomposites have obtained a great deal of attention due to their potential applications in magnetic separation of cells, magnetic resonance imaging and luminescence imaging, and so on. Herein, a new and facile two-step synthetic strategy was developed to prepare magnetic Fe304 modified single crystalline up- conversion luminescent NaYF4: Yb3+, Er3+ nanocrystals using Fe304 nanoparticles as the seeds. Acting as the "nu- clei" in the reaction, the presence of Fe304 nanoparticles facilitates the formation of up-conversion NaYF4: Yb3+, Er3+ nanocrystals on their surfaces through heterogeneous nucleation process. The structure and properties of these multifunctional nanocrystals were characterized by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), photo luminescence (PL) and X-ray diffraction (XRD). The results revealed that the as-prepared multifunctional nanocrystals show dual distinct properties of up-conversion fluorescent and superpara- magnetism, which were cubic in shape and very uniform in size with an average size ranging 30m40 nm. These unique functionalities could be very attractive for biological systems, and some biological applications such as cell- labelling were also demonstrated.
基金Project supported by the National Natural Science Foundation of China (No. 20673082), the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry (No. 2006331), the Key Project of Science and Technology of Shaanxi Province (No. 2005k07-G2), and the Natural Science Foundation of Shaanxi Education Committee (No. 06JK167).
文摘Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives (Al, Cr, Ni, Co, Zr and Mo). Hydrogen storage properties of the samples were investigated. The results show that both Fe and Fe2O3 powder with additive Mo presented excellent catalytic activity and cyclic stability, and their hydrogen producing temperature could be surprisingly decreased. The temperature of forming hydrogen for the Fe2O3-Mo at the rate of 250 μmol·min^-1·Fe-g^-1 could be dramatically decreased from 527 ℃ before addition of Mo to 283 ℃ after addition of Mo in the fourth cycle. The cause for it was probably related to preventing the sinter of the sample particles. In addition, hydrogen storage capacity of the Fe2O3-Mo can reach w=4.5% (72 kg H2/m^3), close to International Energy Agency (IEA) criterion. These show the value of practical application of the Fe2O3-Mo as the promising hydrogen storage material.
文摘The modified Fe3O4 nanoparticles with the extracted pectin from the cell wall of Azolla filicoloides(FNEP) can remove methyl orange as a watersoluble azo dye from waste water better than Azolla and the extracted pectin from Azolla(EPA),alone.It could be due to more crowding the main functional groups of uptake after binding pectin with nanoparticles.Thermodynamic studies showed that adsorption equilibrium constant(KL) and maximum adsorption capacities(Q(max)) were increased with decreasing temperature(exothermic).The maximum uptake capacity(Q(max)) of dye by FNEP in a batch reactor was 0.533,0.498 and 0.446 mmol/g at 5,25 and 50℃,respectively.The enthalpy change(△H) and entropy change(△S) were 15.31 kJ/mol and 0.02434 kJ/mol K,respectively.
基金This work was supported by the National Natural Science Foundation of China (Nos.21931005,21871177,20172012002)the Natural Science Foundation of Shanghai,China(No.20ZR1427600)the Project of the Shanghai Science and Technology Committee,China(No.19JC1412600).
文摘Lithium-sulfur(Li-S)batteries with high energy densities have received increasing attention.However,the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application,which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion.To address this issue,a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe)was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP)separator.The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides,while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides.The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved.A large discharge capacity of 1481 mA∙h∙g-1 is achieved at 0.2 C(1 C=1675 mA/g),and a high capacity of 601 mA∙h∙g-1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C.This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides,good wettability to the electrolyte and high catalytic property.
基金financially supported by the National R&D Program of China (Nos.2017YFA0207400 and 2016YFA0300801)the National Natural Science Foundation of China (Nos.51502033,61734002 and 61571079)+1 种基金the International Cooperation Projects (No.2015DFR50870)the Science and Technology Project of Sichuan Province (No.2017JY0002)
文摘Magnetite (Fe3O4) has been used for thousands of years as one of the important magnetic materials. The rapid developments of thin film technology in the past few decades attract the attention of material scientists on the fabrication of magnetite thin films. In this article, we present an overview of recent progress on Fe3O4 thin films. The widely used preparation methods are surveyed, and the effect of sub- strates is discussed. Specifically the modified Fe3O4 thin films exhibit excellent electrical and magnetic properties compared with the pure films. It is noteworthy that modified Fe3O4 thin films can be put into two categories: (1) doped films, where foreign metal ions substitute iron ions at A or B sites: and (2) hybrid films, where magnetite phases are mixed with other materials. Notably, Fe3O4 thin films show great potentials in many applications such as sensors and batteries. It is expected that the investigations of Fe3O4 thin films will give us some breakthroughs in materials science and technology.