We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.