Hollow metal-organic frameworks(MOFs)and their derivatives have attracted more and more attention due to their high specific surface area and perfect morphological structure,which determine their large potential appli...Hollow metal-organic frameworks(MOFs)and their derivatives have attracted more and more attention due to their high specific surface area and perfect morphological structure,which determine their large potential application in energy storage and catalysis fields.However,few researchers have carried out further modification on the outer shell of hollow MOFs,such as the perforation modification,which will endow hollow nanomaterials derived from MOFs with multifunctionality.In this paper,hollow MOFs of MIL-53(Fe)with perforated outer surface are successfully synthesized by using SiO2 nanospheres as the template via a self-assembly process induced by the coordination polymerization.The tightly packed mesopore structure makes the carbon outer shell of MOFs thinner,thus realizing the in-situ transformation from MOFs to hollow Fe3 O4/carbon,which exhibits perfect capacity approaching 1270 mA h g-1 even after 200 cycles at 0.1 A g-1,as an anode material in lithium ion batteries(LIBs)application.This research provides a new strategy for the design and preparation of MOFs and their derivatives with multifunctionality for the energy applications.展开更多
Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a mul...Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a multifunctional interlayer composed of paper-derived carbon(PC) scaffold, Fe3O4 nanoparticles,graphene, and graphite sheets is designed for applications in LSBs. The porous PC skeleton formed by the interweaving long-fibers not only facilitates fast transfer of Li ions and electrons but also provides a physical barrier for the polysulfide shuttling. The secondary Fe3O4@graphene component can reduce the polarization, boost the attachment of polysulfides, and promote the charging-discharging kinetics. The outer graphitic sheets layers benefit the interfacial electrochemistry and the utilization of S-containing species.The efficient obstruction of polysulfides diffusion is further witnessed via in situ ultraviolet-visible characterization and first-principles simulations. When 73% sulfur/commercial acetylene black is used as the cathode, the cell exhibits excellent capacity retention with high capacities at 0.5 C for 1000 cycles and even up to 10 C for 500 cycles, an ultrahigh rate capability up to 10 C(478 m Ah g-1), and a high arealsulfur loading of 8.05 mg cm-2. The strategy paves the way for developing multifunctional composites for LSBs with superior performance.展开更多
Carbon-coated Fe3O4( Fe3O4/C) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride(EDC) were prepared, characterized and applied to adsorb bovine serum albumin(BSA). The pre...Carbon-coated Fe3O4( Fe3O4/C) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride(EDC) were prepared, characterized and applied to adsorb bovine serum albumin(BSA). The prepared magnetic microspheres had spherical core-shell structure with a uniform and continuous carbon coating coupled with activation by EDC, and possessed superparamagnetic characteristics. The experimental results showed that the adsorption amount of BSA on the EDC-activated Fe3O4/C(Fe3O4/C-EDC) microspheres was higher than that on the Fe3O4/C microspheres. The maximum adsorption of BSA on Fe3O4/C-EDC microspheres occurred at pH 4.7, which was the isoelectric point of BSA. At low concentrations(below 1.0 M), salt had no noticeable effect on BSA adsorption. The BSA adsorption of Fe3O4/C-EDC microspheres had a better fit to the Langmuir model than the Freundlich isotherm and Temkin isotherm model, and the kinetic data were well described by the pseudo-second-order model. The adsorption equilibrium could be reached within 20 min. High desorption efficiency(97.6%) of BSA from Fe3O4/C-EDC microspheres was obtained with 0.5 M Na2HPO4(pH 9.4) as the desorbent.展开更多
Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which ...Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which was activated using HNO3 and modified by FeSO4 and Fe(NO3)3 was examined.The pore textures and surface chemical characteristics of the carbon materials were examined by scanning electron microscopy(SEM),Brunner-Emmet-Teller(BET),X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy.The surface topography,the pore structure,active materials,and functional groups of AC,AC modificated by HNO3(HNO3/AC for short),and AC modificated by FeSO4 and Fe(NO3)3(Fe/AC for short)were systematically studied.Subsequently,the mechanism of modifying the conditions for the carbon materials was determined.Results showed that the surface micro topography of HNO3/AC became unsystematic and disordered.After modification with FeSO4,the ferriferous oxide was mainly present as a near-spherical crystal.Ferriferous oxides from Fe(NO3)3 modification mainly exhibited a plate shape.HNO3 modification could enlarge the pores but decrease the specific surface area of AC.FeSO4 modification resulted in a new net post structure in the pore canal of AC.Fe(NO3)3 modification caused the pore space structure to develop in the interior,and a higher calcination temperature was useful for ablation.The ash content of the AC was substantially reduced upon HNO3 modification.Upon FeSO4 modification,α-FeOOH,α-Fe2O3 andγ-Fe2O3 coexisted under the condition of a lower concentration of FeSO4 and a lower calcination temperature,and a higher FeSO4 concentration and calcination temperature generated moreα-Fe2O3.The same Fe(NO3)3 modification and a higher calcination temperature were beneficial to the minor chipping formation ofγ-Fe2O3.A higher Fe(NO3)3 loading produced a lower graphitization degree.HNO3 modification formed various new oxygen-containing functional groups and few nitrogen-containing groups.Based on the cover,FeSO4 and Fe(NO3)3 modification could decrease the oxygen-containing and nitrogen-containing functional groups.These results could optimize the modification condition and improve physical and chemical properties of carbon-based sorbents.展开更多
基金supported by the State Key Research Development Program of China(2016YFA0204200)The National Natural Science Foundation of China(21822603,21811540394,5171101651,21677048,21773062,and 21577036)+1 种基金Shanghai Pujiang Program(17PJD011)the Fundamental Research Funds for the Central Universities(22A201514021).
文摘Hollow metal-organic frameworks(MOFs)and their derivatives have attracted more and more attention due to their high specific surface area and perfect morphological structure,which determine their large potential application in energy storage and catalysis fields.However,few researchers have carried out further modification on the outer shell of hollow MOFs,such as the perforation modification,which will endow hollow nanomaterials derived from MOFs with multifunctionality.In this paper,hollow MOFs of MIL-53(Fe)with perforated outer surface are successfully synthesized by using SiO2 nanospheres as the template via a self-assembly process induced by the coordination polymerization.The tightly packed mesopore structure makes the carbon outer shell of MOFs thinner,thus realizing the in-situ transformation from MOFs to hollow Fe3 O4/carbon,which exhibits perfect capacity approaching 1270 mA h g-1 even after 200 cycles at 0.1 A g-1,as an anode material in lithium ion batteries(LIBs)application.This research provides a new strategy for the design and preparation of MOFs and their derivatives with multifunctionality for the energy applications.
基金the financial supports provided by the National Natural Science Foundation of China (Nos. 21971145, 21601108)the Taishan Scholar Project Foundation of Shandong Province (ts20190908)+1 种基金the Natural Science Foundation of Shandong Province (ZR2019MB024)Young Scholars Program of Shandong University (2017WLJH15)。
文摘Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a multifunctional interlayer composed of paper-derived carbon(PC) scaffold, Fe3O4 nanoparticles,graphene, and graphite sheets is designed for applications in LSBs. The porous PC skeleton formed by the interweaving long-fibers not only facilitates fast transfer of Li ions and electrons but also provides a physical barrier for the polysulfide shuttling. The secondary Fe3O4@graphene component can reduce the polarization, boost the attachment of polysulfides, and promote the charging-discharging kinetics. The outer graphitic sheets layers benefit the interfacial electrochemistry and the utilization of S-containing species.The efficient obstruction of polysulfides diffusion is further witnessed via in situ ultraviolet-visible characterization and first-principles simulations. When 73% sulfur/commercial acetylene black is used as the cathode, the cell exhibits excellent capacity retention with high capacities at 0.5 C for 1000 cycles and even up to 10 C for 500 cycles, an ultrahigh rate capability up to 10 C(478 m Ah g-1), and a high arealsulfur loading of 8.05 mg cm-2. The strategy paves the way for developing multifunctional composites for LSBs with superior performance.
基金Funded by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2013ZX07202-010)
文摘Carbon-coated Fe3O4( Fe3O4/C) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride(EDC) were prepared, characterized and applied to adsorb bovine serum albumin(BSA). The prepared magnetic microspheres had spherical core-shell structure with a uniform and continuous carbon coating coupled with activation by EDC, and possessed superparamagnetic characteristics. The experimental results showed that the adsorption amount of BSA on the EDC-activated Fe3O4/C(Fe3O4/C-EDC) microspheres was higher than that on the Fe3O4/C microspheres. The maximum adsorption of BSA on Fe3O4/C-EDC microspheres occurred at pH 4.7, which was the isoelectric point of BSA. At low concentrations(below 1.0 M), salt had no noticeable effect on BSA adsorption. The BSA adsorption of Fe3O4/C-EDC microspheres had a better fit to the Langmuir model than the Freundlich isotherm and Temkin isotherm model, and the kinetic data were well described by the pseudo-second-order model. The adsorption equilibrium could be reached within 20 min. High desorption efficiency(97.6%) of BSA from Fe3O4/C-EDC microspheres was obtained with 0.5 M Na2HPO4(pH 9.4) as the desorbent.
基金General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)。
文摘Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which was activated using HNO3 and modified by FeSO4 and Fe(NO3)3 was examined.The pore textures and surface chemical characteristics of the carbon materials were examined by scanning electron microscopy(SEM),Brunner-Emmet-Teller(BET),X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy.The surface topography,the pore structure,active materials,and functional groups of AC,AC modificated by HNO3(HNO3/AC for short),and AC modificated by FeSO4 and Fe(NO3)3(Fe/AC for short)were systematically studied.Subsequently,the mechanism of modifying the conditions for the carbon materials was determined.Results showed that the surface micro topography of HNO3/AC became unsystematic and disordered.After modification with FeSO4,the ferriferous oxide was mainly present as a near-spherical crystal.Ferriferous oxides from Fe(NO3)3 modification mainly exhibited a plate shape.HNO3 modification could enlarge the pores but decrease the specific surface area of AC.FeSO4 modification resulted in a new net post structure in the pore canal of AC.Fe(NO3)3 modification caused the pore space structure to develop in the interior,and a higher calcination temperature was useful for ablation.The ash content of the AC was substantially reduced upon HNO3 modification.Upon FeSO4 modification,α-FeOOH,α-Fe2O3 andγ-Fe2O3 coexisted under the condition of a lower concentration of FeSO4 and a lower calcination temperature,and a higher FeSO4 concentration and calcination temperature generated moreα-Fe2O3.The same Fe(NO3)3 modification and a higher calcination temperature were beneficial to the minor chipping formation ofγ-Fe2O3.A higher Fe(NO3)3 loading produced a lower graphitization degree.HNO3 modification formed various new oxygen-containing functional groups and few nitrogen-containing groups.Based on the cover,FeSO4 and Fe(NO3)3 modification could decrease the oxygen-containing and nitrogen-containing functional groups.These results could optimize the modification condition and improve physical and chemical properties of carbon-based sorbents.