Heterojunction catalysts composed of transition metal sulfides exhibited excellent potentials in electrocatalytic water splitting.Herein,we have designed a FeS/Co_(3)S_(4) heterojunction catalyst for hydrogen evolutio...Heterojunction catalysts composed of transition metal sulfides exhibited excellent potentials in electrocatalytic water splitting.Herein,we have designed a FeS/Co_(3)S_(4) heterojunction catalyst for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline water/seawater solution.Three-dimensional nanoarrays were grown on nickel foam,and the successful synthesis of heterojunction endowed excellent activity to the catalyst.In alkaline water/seawater solution,the low overpotentials(at current density of 10 mA/cm^(2))of HER were 120.3 and 135.6 mV and the low overpotentials of OER were 212 and 232 mV,respectively.This work provided an effective method for highly-efficiently electrocatalytic splitting of water via fabrication of heterojunction.展开更多
High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Fur...High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.展开更多
基金supported by the Dean/Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2023K001)Taishan Scholars Foundation of Shandong province(TSQN201909058).
文摘Heterojunction catalysts composed of transition metal sulfides exhibited excellent potentials in electrocatalytic water splitting.Herein,we have designed a FeS/Co_(3)S_(4) heterojunction catalyst for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline water/seawater solution.Three-dimensional nanoarrays were grown on nickel foam,and the successful synthesis of heterojunction endowed excellent activity to the catalyst.In alkaline water/seawater solution,the low overpotentials(at current density of 10 mA/cm^(2))of HER were 120.3 and 135.6 mV and the low overpotentials of OER were 212 and 232 mV,respectively.This work provided an effective method for highly-efficiently electrocatalytic splitting of water via fabrication of heterojunction.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(NRF-2018R1A5A1025224 and NRF-2021R1A4A1052051)This work was also supported by the National Research Foundation of Korea Grant funded by the Korean Government Ministry of Education and Science Technology(NRF-2021R1I1A3060193).
文摘High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.