利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜...利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of st...A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr.展开更多
In this paper, the laccase immobilized on Fe304@SiO2-NH2 nanoparticles was successfully prepared by the glutaraldehyde cross-linking method. The degradations of 2,4-diehlorophenol (2,4-DCP) catalyzed by laccase and ...In this paper, the laccase immobilized on Fe304@SiO2-NH2 nanoparticles was successfully prepared by the glutaraldehyde cross-linking method. The degradations of 2,4-diehlorophenol (2,4-DCP) catalyzed by laccase and immobilized laccase were carried out. The optimal conditions regarding degradation efficiency were also discussed, which include reaction time, pH value, temperature, concentration of 2,4-DCP and laccase. When laccase was immobilized on Fe304@SiO2-NH2 carrier by crosslinking with glutaraldehyde, the stability and repetition were im- proved significantly. The removal efficiency of 2,4-DCP by immobilized laccase still remained over 59% after six cycles of operation. Degradation of 2,4-DCP is a first-order reaction and the activation energies of 2,4-DCP catalyzed by laccase and immobilized laccase are 51.93 kJ·mol-1 strate the immobilized laccase had a faster degradation Fe304@MSS-NH2 can promote the degradation reaction. and 44.12 kJ·mol-1, respectively. The results demonrate than the free laccase; the magnetic carrier展开更多
文摘利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
基金financially supported by the National Natural Science Foundation of China[Grant No.20477058]by the Chinese Ministry of Science and Technology[Grant No.2014YF211000]
文摘A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr.
基金support from the National Natural Science Foundation of China (Grant No. 20971043 and No. 20577010), the Open Project Program of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University.
文摘In this paper, the laccase immobilized on Fe304@SiO2-NH2 nanoparticles was successfully prepared by the glutaraldehyde cross-linking method. The degradations of 2,4-diehlorophenol (2,4-DCP) catalyzed by laccase and immobilized laccase were carried out. The optimal conditions regarding degradation efficiency were also discussed, which include reaction time, pH value, temperature, concentration of 2,4-DCP and laccase. When laccase was immobilized on Fe304@SiO2-NH2 carrier by crosslinking with glutaraldehyde, the stability and repetition were im- proved significantly. The removal efficiency of 2,4-DCP by immobilized laccase still remained over 59% after six cycles of operation. Degradation of 2,4-DCP is a first-order reaction and the activation energies of 2,4-DCP catalyzed by laccase and immobilized laccase are 51.93 kJ·mol-1 strate the immobilized laccase had a faster degradation Fe304@MSS-NH2 can promote the degradation reaction. and 44.12 kJ·mol-1, respectively. The results demonrate than the free laccase; the magnetic carrier