Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic...Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic modulus of the as-prepared Fe40Ni40P14B6 BMG (bulk metallic glass) measured by nanoindentation tests are 8.347 and 176.61 GPa respectively. The displace- ment-load curve shows “pop-in” characteristics which correspond to the loading rate bursts. Many shear bands around the indent were observed. The as-prepared Fe-based BMG exhibits a compressive plastic strain of 5.21%, which is much larger than that of other Fe-based glassy alloys and most of other BMGs.展开更多
Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled spe...Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling T>290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are 30 nm and 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization Bs 0.744 T.展开更多
文摘Fe40Ni40P14B6 bulk metallic glass rods have been prepared by water quenching the fluxed alloy. The deformation behavior was investigated by nanoindentation tests and compressing tests. The average hardness and elastic modulus of the as-prepared Fe40Ni40P14B6 BMG (bulk metallic glass) measured by nanoindentation tests are 8.347 and 176.61 GPa respectively. The displace- ment-load curve shows “pop-in” characteristics which correspond to the loading rate bursts. Many shear bands around the indent were observed. The as-prepared Fe-based BMG exhibits a compressive plastic strain of 5.21%, which is much larger than that of other Fe-based glassy alloys and most of other BMGs.
基金Supported by the Hong Kong Research Grants Council the National Natural Science Foundation of China(Grant No.50861007)Xinjiang University Doctoral Re-search Start-up Grant(Grant No.BS050102)
文摘Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling T>290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are 30 nm and 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization Bs 0.744 T.