期刊文献+
共找到1,600篇文章
< 1 2 80 >
每页显示 20 50 100
Layer-by-layer fabrication of montmorillonite coating immobilizing Cu_(2)O nanoparticles for continuously catalyzing glycerol to dihydroxyacetone
1
作者 Kejin Li Jiahui Liu +2 位作者 Dajian Li Xiaolan Chen Chunhui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期263-275,共13页
Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in m... Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in microreactors remains challenging.In this investigation,a technique for creating Cu_(2)O/montmorillonite catalyst coating,using electrostatic attraction for layer-by-layer self-assembly,was proposed.The montmorillonite film's morphology and thickness could be efficiently regulated by adjusting the degree of exfoliation and surface charge of montmorillonite,alongside layer-by-layer coating times.The Cu_(2)O nanoparticles were immobilized using the flow deposition approach.The resulting Cu_(2)O@montmorillonite-film-coated capillary microreactor successfully transformed glycerol into dihydroxyacetone.The conversion of glycerol and product selectivity could be controlled by adjusting the molar ratio of reactants,temperature,residence time,and Cu_(2)O loading.The maximum glycerol conversion observed was 47.6%,with a 27%selectivity toward dihydroxyacetone.The study presents a technique for immobilizing montmorillonite-based catalyst coatings in capillary tubing,which can serve as a foundation for the future application of microreactors in glycerol conversion. 展开更多
关键词 Microreactor coating MONTMORILLONITE GLYCEROL Cu_(2)O
下载PDF
Ti3C2Tx MXene-functionalized Hydroxyapatite/Halloysite nanotube filled poly-(lactic acid)coatings on magnesium:In vitro and antibacterial applications
2
作者 Mehmet Topuz Yuksel Akinay +1 位作者 Erkan Karatas Tayfun Cetin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3758-3771,共14页
Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional co... Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional coatings is crucial due to the rapid degradation behavior of Mg.In this study,the function of 2D lamellar Ti_(3)C_(2)T_(x)(MXene)in Hydroxyapatite(HA)and Halloysite nanotube(HNT)hybrid coatings in biodegradable poly-(lactic acid)(PLA)was investigated.The morphological and structural characterizations of the coatings on Mg were revealed through HRTEM,XPS,SEM-EDX,XRD,FTIR,and contact angle analyses/tests.Electrochemical in vitro corrosion tests(OCP,PDS,and EIS-Nyquist)were conducted for evaluate corrosion resistance under simulated body fluid(SBF)conditions.The bioactivity of the coatings in SBF have been revealed in accordance with the ISO 23,317 standard.Finally,antibacterial disk diffusion tests were conducted to investigate the functional effect of MXene in coatings.It has been determined that the presence of MXene in the coating increased not only surface wettability(131°,85°,77°,and 74°for uncoated,pH,PHH,and PHH/MXene coatings,respectively)but also increased corrosion resistance(1857.850,42.357,1.593,and 0.085×10^(-6),A/cm^(2) for uncoated,pH,PHH,and PHH/MXene coatings,respectively).It has been proven that the in vitro bioactivity of PLA-HA coatings is further enhanced by adding HNT and MXene,along with SEM morphologies after SBF.Finally,2D lamellar MXene-filled coating exhibits antibacterial behavior against both E.coli and S.aureus bacteria. 展开更多
关键词 MAGNESIUM Pla coating Ti3c2tx mxene In-vitro bioactivity Disk diffusion
下载PDF
LPCS Ni-Zn-Al_(2)O_(3) Intermediate Layer Enhanced SPS NiCr-Cr_(3)C_(2) Coating with Higher Corrosion and Wear Resistances
3
作者 白杨 LI Yan +2 位作者 XING Lukuo LI Xiangbo WANG Zhenhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期188-195,共8页
The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by usin... The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by using low-pressure cold spray (LPCS) method to improve the salt fog corrosion resistance properties of the supersonic plasma spray (SPS) NiCr-Cr_(3)C_(2) coatings.The friction and wear performance for the double-layer and single-layer NiCr-Cr_(3)C_(2) coatings were carried out by line-contact reciprocating sliding,respectively.Combined with the coating surface analysis techniques,the effect of the salt fog corrosion on the tribological properties of the double-layer coatings was studied.The results showed that the double-layer coatings exhibited better wear resistance than that of the single-layer coatings,due to the better corrosion resistance of the intermediate layer;the wear mass losses of the double-layer coatings was reduced by 70%than that of the single layer coatings and the wear mechanism of coatings after salt fog corrosion conditions is mainly corrosion wear. 展开更多
关键词 low-pressure cold spray NiCr-Cr_(3)C_(2)coating wear behavior salt fog corrosion
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
4
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
下载PDF
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
5
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle coating finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
Preventing formation of intermetallic compounds in ultrasonic-assisted Sn soldering of Mg/Al alloys through pre-plating a Ni coating layer on the Mg substrate
6
作者 Yingzong Liu Yuanxing Li +1 位作者 Hui Chen Zongtao Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期726-741,共16页
Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joi... Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals. 展开更多
关键词 Ultrasonic-assisted soldering Mg_(2)Sn Ni coating layer Shear strength
下载PDF
Study on the effective elastic performance of composites containing decagonal symmetric two-dimensional quasicrystal coatings
7
作者 Yurun WU Lu LI Lianhe LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1655-1664,共10页
On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elast... On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elastic constants of rare-earth QC reinforced magnesium-based composites are provided.Detailed discussion is presented on the effects of the volume fraction of the inclusions,the aspect ratio of the inclusions,the coating thickness,and the coating material parameters on the effective elastic constants of the composites.The results indicate that considering the coating increases the effective elastic constants of the composites to some extent. 展开更多
关键词 Mori-Tanaka approach coated inclusion decagonal symmetric twodimensional(2D)quasicrystal(QC)
下载PDF
Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al_(2)O_(3) composite coatings using satellited powders 被引量:2
8
作者 Pejman Zamani Zia Valefi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1779-1791,共13页
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida... Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure. 展开更多
关键词 MCrAlY coating CoNiCrAlY-Al_(2)O_(3)composite satellited feedstock MICROSTRUCTURE high-temperature oxidation high-velocity oxy-fuel spraying
下载PDF
Assessment of Mg(OH)_(2)/TiO_(2) coating in the Mg-Ca-Zn alloy for improved corrosion resistance and antibacterial performance 被引量:1
9
作者 Leonardo Hernández Jesús Ramón-Sierra +4 位作者 Montserrat Soria-Castro Ángel Bacelis Geonel Rodríguez-Gattorno Elizabeth Ortiz-Vázquez Gloria Acosta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期361-378,共18页
The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) a... The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration. 展开更多
关键词 Magnesium alloy EIS Mg(OH)_(2) TiO_(2) Antibacterial coatings
下载PDF
Effect of chromium on hot corrosion behavior of arc-sprayed NiCr coatings
10
作者 王旭 张海燕 +3 位作者 魏炜 高站起 尼军杰 黄智泉 《China Welding》 CAS 2024年第1期1-6,共6页
In this article,NiCr coatings with chromium content of 13%,27%and 41%were prepared by arc spraying.They were exposed in molten salts(NaCl-Na_(2)SO_(4))at 800℃for 200 hours.The effect of chromium content on the hot co... In this article,NiCr coatings with chromium content of 13%,27%and 41%were prepared by arc spraying.They were exposed in molten salts(NaCl-Na_(2)SO_(4))at 800℃for 200 hours.The effect of chromium content on the hot corrosion behavior of the coatings was in-vestigated.X-ray diffraction(XRD)and scanning electron microscope with energy dispersion spectrum(SEM-EDS)were used to analyze the phase compositions,morphologies and chemical compositions of the coatings.The results show that NiCr13 coating exhibited the worst hot corrosion resistance due to the low chromium content,which resulted in NiO being the major reaction product.It should be noted that the hot corrosion resistance of NiCr27 coating was better than that of NiCr41 coating.The basic fluxing of Cr_(2)O_(3) lowered its protection during the hot corrosion process and led to the formation of porous Cr_(2)O_(3) on the NiCr41 coating.The molten salts accelerated the oxidation reac-tion resulting in thicker and porous oxide scales formed on the surfaces of coatings. 展开更多
关键词 NiCr coatings arc spraying hot corrosion Na_(2)SO_(4)-NaCl basic fluxing
下载PDF
Critical current degradation in an epoxy-impregnated rare-earth Ba_(2)Cu_(3)O_(7-x)coated conductor caused by damage during a quench
11
作者 Donghui LIU Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1557-1572,共16页
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th... High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications. 展开更多
关键词 epoxy-impregnated rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductor(CC) QUENCH DAMAGE critical current degradation shear stress
下载PDF
Two-Dimensional Graphitic Carbon-Nitride(g-C_(3)N_(4))-Coated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) Cathodes for High-Energy-Density and Long-Life Lithium Batteries
12
作者 Zhenliang Duan Pengbo Zhai +1 位作者 Ning Zhao Xiangxin Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期140-149,共10页
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface... High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C. 展开更多
关键词 cathode materials g-C_(3)N_(4) coating LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) lithium batteries PVDF:LLZTO electrolyte membranes
下载PDF
Two-Dimensional Co_(2)(OH)1,4-Benzenedicarboxylate-Halloysite Nanotube Nanocomposite-Epoxy Coating with High Corrosion Resistance
13
作者 Zhao Huarong Zhang Yueshuang Cheng Zhilin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期44-53,共10页
Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.I... Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.In this work,based on the high interface compatibility of two-dimensional(2D)Co_(2)(OH)_(2)BDC(BDC=1,4-benzenedicarboxylate)in the epoxy coating that we reported in previous work,we fabricated a 2D Co_(2)(OH)_(2)BDC-halloysite nanotube(HNT)nanocomposite have a structure consisting of alternating of nanosheets and nanotube by in situ synthesis.The nanocomposite was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,and scanning electron microscopy.The mechanical and anticorrosion performance of the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was evaluated by mechanical tests and electrochemical impedance spectroscopy spectra.Compared with a conventional unreinforced epoxy coating,the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating had higher mechanical strength and toughness,and the low-frequency impedance modulus of 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was increased by three orders of magnitude,demonstrating the high corrosion resistance of our reinforced coating. 展开更多
关键词 Composite materials 2D Co_(2)(OH)1 4-Benzenedicarboxylate-Halloysite Nanotube halloysite nanotube epoxy coatings corrosion resistance
下载PDF
Effect of N_(2) partial pressure on comprehensive properties of antibacterial TiN/Cu nanocomposite coating
14
作者 Hui Liu Yanhui Zhao +10 位作者 Chuanshi Sui Yi Li Muhammad Ali Siddiqui Susu Li Tong Li Shuyuan Zhang Hai Wang Tao Jin Ling Ren Ke Yang Ning Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期131-143,共13页
Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN... Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants. 展开更多
关键词 N_(2)partial pressure TiN/Cu coating wear resistance corrosion behavior antibacterial ability CYTOCOMPATIBILITY
下载PDF
Preparation and oxidation property of ZrB_2-MoSi_2/SiC coating on carbon/carbon composites 被引量:14
15
作者 张武装 曾毅 +2 位作者 GBOLOGAH Lemuel 熊翔 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1538-1544,共7页
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB... To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature. 展开更多
关键词 carbon/carbon composites ZrB2-MoSi2 SIC coating OXIDATION
下载PDF
SiC-MoSi_2/ZrO_2-MoSi_2 coating to protect C/C composites against oxidation 被引量:7
16
作者 付前刚 张佳平 +2 位作者 张正中 李贺军 孙粲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2113-2117,共5页
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method.... To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC-MoSi2/ZrO2-MoSi2 coating is dense and crack-free with a thickness of 250-300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures. 展开更多
关键词 carbon/carbon composites SiC-MoSi2/ZrO2-MoSi2 coating oxidation resistance
下载PDF
Anti-oxidation properties of ZrB_2 modified silicon-based multilayer coating for carbon/carbon composites at high temperatures 被引量:7
17
作者 李贺军 姚西媛 +2 位作者 张雨雷 姚栋嘉 王少龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2094-2099,共6页
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme... To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer. 展开更多
关键词 C/C composites coating ZRB2 anti-oxidation properties
下载PDF
Tribological properties of nanostructured Al_2O_3-40%TiO_2 multiphase ceramic particles reinforced Ni-based alloy composite coatings 被引量:9
18
作者 何龙 谭业发 +2 位作者 谭华 周春华 高立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2618-2627,共10页
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib... The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear. 展开更多
关键词 nanostructured A1203-TiO2 multiphase ceramic particles Ni-based alloy composite coating plasma spray friction wear
下载PDF
Tribological behavior and mechanisms of graphite/CaF_2/TiC/Ni-base alloy composite coatings 被引量:4
19
作者 蔡滨 谭业发 +2 位作者 何龙 谭华 王小龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期392-399,共8页
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa... In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred 展开更多
关键词 plasma spray composite coatings Ni-base alloy GRAPHITE TIC CAF2 TRIBOLOGY
下载PDF
Structure and mechanical properties of thick Cr/Cr_2N/CrN multilayer coating deposited by multi-arc ion plating 被引量:8
20
作者 单磊 王永欣 +3 位作者 李金龙 李赫 鲁侠 陈建敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1135-1143,共9页
A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelec... A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater. 展开更多
关键词 Cr/Cr2N/CrN multilayer coating microstructure mechanical properties corrosion resistance FRICTION
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部