The morphology, nanomechanical properties and interfacial regions of natural rubber(NR) and FeCo nanoparticles composite were determined by AFM nanomechanical mapping. The results showed that the size of FeCo partic...The morphology, nanomechanical properties and interfacial regions of natural rubber(NR) and FeCo nanoparticles composite were determined by AFM nanomechanical mapping. The results showed that the size of FeCo particles was mostly from 40 to 100 nm and the FeCo nanoparticles were homogeneously dispersed in the NR bulk. The strength of NR composite increased with the FeCo nanoparticles loading. Young's modulus of NR region, FeCo region and interfacial region was measured by AFM nanomechanical tapping as 1.6 ± 0.6, 16.7 ±4.2 and 5.8 ± 1.5 MPa, respectively. The width of the interface for NR5, NR10 and NR15 was determined to be 15±8.1, 26±14.3 and 32±16.4 nm, respectively.展开更多
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p...Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications.展开更多
基金Funded by National Natural Science Foundation of China(No.21264006)
文摘The morphology, nanomechanical properties and interfacial regions of natural rubber(NR) and FeCo nanoparticles composite were determined by AFM nanomechanical mapping. The results showed that the size of FeCo particles was mostly from 40 to 100 nm and the FeCo nanoparticles were homogeneously dispersed in the NR bulk. The strength of NR composite increased with the FeCo nanoparticles loading. Young's modulus of NR region, FeCo region and interfacial region was measured by AFM nanomechanical tapping as 1.6 ± 0.6, 16.7 ±4.2 and 5.8 ± 1.5 MPa, respectively. The width of the interface for NR5, NR10 and NR15 was determined to be 15±8.1, 26±14.3 and 32±16.4 nm, respectively.
基金supported by the National Natural Science Foundation of China (21972048, 21802046)the Natural Science Foundation of Guangdong Province (Nos. 2019A1515011138, 2017A030313090, 2017A030310086, 2018A0303130018)。
文摘Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications.