Phase decomposition kinetics and the corresponding mechanical properties of the severe cold-rolled(SCRed) carbon-doped(1.3 at.%) equimolar FeCoCrNiMn high-entropy alloy(HEA) after being annealed at 500 ℃ were investi...Phase decomposition kinetics and the corresponding mechanical properties of the severe cold-rolled(SCRed) carbon-doped(1.3 at.%) equimolar FeCoCrNiMn high-entropy alloy(HEA) after being annealed at 500 ℃ were investigated. This single face-centered cubic(FCC) solid-solution HEA decomposed to M23 C6+L10, B2, and σ in chronological order. The formation kinetics of the L10, B2, and σ phases followed the Johnson-Mehl-AvramiKolmogorov(JMAK) equation. The yield strength of the HEA was 1520 MPa and increased to 1920 MPa after being annealed at 500 ℃ for 1 h, as a result of the formation of nanosized M23 C6 and L10. Both strength and ductility decreased after 2 d of annealing due to the increase of volume fractions and the coarsening of the M23C6 and L10 precipitates. From 4 to 32 d, the hardness was found to increase, which is ascribed to the rapid formation of the B2 and σ phases. From 32 to 64 d, the hardness increased further to finally reach about HV 760, with the FCC matrix almost exhausted to form the M23 C6, L10, B2, and σ phases. The results of this work may serve as a guide for the heat-treatment of carbon-doped HEAs.展开更多
Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding...Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000℃, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800℃ and 900℃ for 1 h, showed relatively good combination of strength and ductility.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5...Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.展开更多
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega...FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.展开更多
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit...The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites.展开更多
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com...Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.展开更多
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe...We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.展开更多
Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolys...Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2).展开更多
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we...This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure.展开更多
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat...AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively.展开更多
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In...The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.展开更多
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ...Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy.展开更多
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep...Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.展开更多
About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-90...About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-900℃.Heat treatment was performed on the CSed HEA before oxidation to heal the incomplete interfaces between the deposited particles.Results show that the microstructure of the CSed HEA is characterized by grain refinement and abundant interparticle incomplete interfaces.Post-spray heat treatment promotes recrystallization and grain growth in the CSed HEA.After oxidation testing,the oxide scales are composed of multi-layers:a Mn_(2)O_(3)(or Mn_(3)O_(4)) outer layer,a Mn-Cr spinel intermediate layer and a Cr_(2)O_(3) inner layer.The CSed HEA exhibits higher parabolic rate constants and more favorable internal oxidation than the bulk HEAs that have similar compositions in the literature.Such a discrepancy becomes pronounced at higher temperatures.The grain refinement and numerous particle boundaries are responsible for such a distinctive performance of the CSed HEA.展开更多
Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase ...Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.展开更多
The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spine...The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.展开更多
基金Project(51901134)supported by the National Natural Science Foundation of ChinaProject(SJTU.18X100040023)supported by the Program of Scientific Research Ability Cultivation for Young Researchers,China。
文摘Phase decomposition kinetics and the corresponding mechanical properties of the severe cold-rolled(SCRed) carbon-doped(1.3 at.%) equimolar FeCoCrNiMn high-entropy alloy(HEA) after being annealed at 500 ℃ were investigated. This single face-centered cubic(FCC) solid-solution HEA decomposed to M23 C6+L10, B2, and σ in chronological order. The formation kinetics of the L10, B2, and σ phases followed the Johnson-Mehl-AvramiKolmogorov(JMAK) equation. The yield strength of the HEA was 1520 MPa and increased to 1920 MPa after being annealed at 500 ℃ for 1 h, as a result of the formation of nanosized M23 C6 and L10. Both strength and ductility decreased after 2 d of annealing due to the increase of volume fractions and the coarsening of the M23C6 and L10 precipitates. From 4 to 32 d, the hardness was found to increase, which is ascribed to the rapid formation of the B2 and σ phases. From 32 to 64 d, the hardness increased further to finally reach about HV 760, with the FCC matrix almost exhausted to form the M23 C6, L10, B2, and σ phases. The results of this work may serve as a guide for the heat-treatment of carbon-doped HEAs.
基金Project(2014H6005) supported by the Major Industry-Academy Cooperation Program of Fujian Province,ChinaProject(LY17E050003) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2016PY015) supported by the Cultivation Foundation of Taizhou University,China
文摘Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000℃, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800℃ and 900℃ for 1 h, showed relatively good combination of strength and ductility.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金the Swedish Foundation for International Cooperation in Research and Higher Education(STINT,Nos.IB2020-8781 and IB20229228)for the collaboration between KTH<U(Sweden),HYU(Korea),and NEU(China)VINNOVA(No.2022-01216),the SSF Strategic Mobility Grant(No.SM22-0039),the?Forsk(No.23-540),and the Swedish Steel Producers’Association(Jernkontoret),in particular,Axel Ax:-son Johnsons forskningsfond,Prytziska fondennr 2,Gerhard von Hofstens Stiftelse f?r Metallurgisk forskning,and Stiftelsen?veringenj?ren Gustaf Janssons Jernkontorsfond for the financial support.Key Lab of EPM(NEU)is acknowledged for supporting the partial FactSage calculation+2 种基金the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Min-istry of Education and Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(No.FMRUlab-22-1)for supporting this researchThe Natural Science Foundation of Liaoning Province,China(No.2023MSBA-135)the Fundamental Research Funds for the Central Universities(No.N2409006)are also acknowledged。
文摘Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
基金supported by the National Natural Natural Science Foundation of China(No.52271055)the Natural Science Foundation of Hebei Province,China(No.E2024202154).
文摘FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.
基金supported by the National Natural Science Foundation of China(Grant No.52006074,52101255)Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515010886)+2 种基金Youth science and technology innovation talent of Guangdong TeZhi planChina(Grant No.2019TQ05N068)the Fundamental Research Funds for the Central Universities,HUST:2021GCRC046
文摘The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites.
基金Funded by the National Natural Science Foundation of China(No.52071252)the Key Research and Development Plan of Shaanxi Province Industrial Project(Nos.2021GY-208,2022GY-407,and 2021ZDLSF03-11)the China Postdoctoral Science Foundation(No.2020M683670XB)。
文摘Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.
基金supported in part by the National Science Foundation(NSF)award#CMMI-1944040。
文摘We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.
基金financed by the National Key Research and Development Program of China [2022YFB3803703]the National Natural Science Foundation of China [52071141, 52271212, 52201250, 51771056]the Interdisciplinary Innovation Program of North China Electric Power University [XM2112355]。
文摘Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2).
基金supported by the Office of Scientific Research of Shandong Vocational and Technical University of International Studies.
文摘This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure.
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金supported by the China Postdoctoral Science Foundation Project(2018M633650XB)Gansu Province Young Doctoral Fund Project(2021QB-043)the CNNC Operations Management Limited R&D Project(QS4FY-22003224)。
文摘AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No.12272118)the National Key Research and Development Program of China (Grant No.2022YFE03030003)。
文摘The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.
基金Project supported by the Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20220407 and BK20220428)。
文摘Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy.
基金supported by Stability Supports Research Project of Treasury Department(No.197801)Talent Fund of CIAE(No.219213)。
文摘Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.
基金financial support of the project from the National Natural Science Foundation of China(Grant No. 51701161)。
文摘About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-900℃.Heat treatment was performed on the CSed HEA before oxidation to heal the incomplete interfaces between the deposited particles.Results show that the microstructure of the CSed HEA is characterized by grain refinement and abundant interparticle incomplete interfaces.Post-spray heat treatment promotes recrystallization and grain growth in the CSed HEA.After oxidation testing,the oxide scales are composed of multi-layers:a Mn_(2)O_(3)(or Mn_(3)O_(4)) outer layer,a Mn-Cr spinel intermediate layer and a Cr_(2)O_(3) inner layer.The CSed HEA exhibits higher parabolic rate constants and more favorable internal oxidation than the bulk HEAs that have similar compositions in the literature.Such a discrepancy becomes pronounced at higher temperatures.The grain refinement and numerous particle boundaries are responsible for such a distinctive performance of the CSed HEA.
基金Project(NCET-11-0127) supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.
基金Projects(51134013,51171037,51101024)supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.