FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and ene...FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) were used to observe and analyze the microstructure and composition of FeCrAl(f)/HA composites,respectively.The mechanical properties of FeCrAl(f)/HA composites were measured by the three-point-bending test.The results show that the composite can be reinforced by FeCrAl fiber and enhanced gradually,and then declined with the increase of the content of FeCrAl fiber(0-11%,volume fraction) in the whole range of experiments.Both the HA matrix and FeCrAl fiber integrate very tightly and bit into each other very deeply and counter-diffusion takes place to some extent at two-phase interface.The optimum parameters of FeCrAl(f)/HA composite are diameter of 22 μm,length of 1-2 mm and of volume faction of about 7% for FeCrAl fibers.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
基金Project(50774096) supported by the National Natural Science Foundation of ChinaProject(2011QNZT046) supported by the Fundamental Research Funds of the Central South University,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) were used to observe and analyze the microstructure and composition of FeCrAl(f)/HA composites,respectively.The mechanical properties of FeCrAl(f)/HA composites were measured by the three-point-bending test.The results show that the composite can be reinforced by FeCrAl fiber and enhanced gradually,and then declined with the increase of the content of FeCrAl fiber(0-11%,volume fraction) in the whole range of experiments.Both the HA matrix and FeCrAl fiber integrate very tightly and bit into each other very deeply and counter-diffusion takes place to some extent at two-phase interface.The optimum parameters of FeCrAl(f)/HA composite are diameter of 22 μm,length of 1-2 mm and of volume faction of about 7% for FeCrAl fibers.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.