The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS_3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor tran...The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS_3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS_3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current(dc) and alternating current(ac) magnetic susceptibility.The paramagnetic to antiferromagnetic transition occurs at approximately T_N 115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe^(2+) could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded.Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS_3 system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404169,51602159,and 11704196)the Scientific Research Foundation of Nanjing University of Posts&Telecommunications,China(Grant Nos.NY217043 and NY218021)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.KYCX17 0754 and SJCX18 0287)
文摘The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS_3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS_3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current(dc) and alternating current(ac) magnetic susceptibility.The paramagnetic to antiferromagnetic transition occurs at approximately T_N 115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe^(2+) could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded.Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS_3 system.