Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structura...Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.展开更多
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by...Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.展开更多
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet...Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.展开更多
Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composi...Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composites(Al_(13)@MoO_(3))were successfully prepared by interpolating the Keggin-type polycationic AlO_(4)Al_(12)(OH)_(24)H_(2)O_(12)^(7+)(Al_(13))into MoO_(3)gallery.These composites can be applied to rapidly adsorb the anionic dye methyl orange(MO)through strong electrostatic interactions lead to compact and sta-ble gathering in the surrounding of the numerous charged Al_(13).Adsorption behaviors of composites with the different amount of Al_(13) were determined,these results revealed that Al_(13)-3.34%@MoO_(3)exhibited the most remarkable adsorption capacity.More importantly,the composite maintains superior adsorption capacity for five consecutive adsorption/desorption cycles,suggesting that Al_(13)@MoO_(3)can be an efficient and durable adsorbent.展开更多
The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in...The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in detail. No obvious thermal anomaly was observed for both compounds in the experimental temperature range. The polynomial equations for calculating the heat capacity values of the two compounds in the range 13—300K were obtained by the least-squares fitting based on the experimental C_p data. The C_p values below 13K were estimated by using the Debye and Einstein heat Capacity functions. The standard molar thermodynamic functions were calculated from 0 to 300K. Gibbs energies of formation were also calculated.展开更多
A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO a...A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO at 90℃ for 5 h in nitrogen without external ligands.展开更多
文摘Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.
基金supported by the National Natural Science Foundation of China(52072118,51772089)the Youth 1000 Talent Program of China+3 种基金the Research and Development Plan of Key Areas in Hunan Province(2019GK2235)the Key Research and Development Program of Ningxia(2020BDE03007)the China Postdoctoral Science Foundation(2019M653649)the Guangdong Basic and Applied Basic Research Fund(2019A1515110518,2019A1515111188,2020B0909030004)。
文摘Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.
基金supported by the funding from the National Natural Science Foundation of China(grant nos.51902187,52072224,and 51732007)the Natural Science Foundation of Shandong Province(ZR2018BEM010)+3 种基金the Science Fund for Distinguished Young Scholars of Shandong Province(ZR2019JQ16)the Fundamental Research Funds of Shandong UniversityYoung Elite Scientist Sponsorship Program by CAST(YESS)the support from Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
文摘Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.
基金the National Natural Science Foundation of China(Nos.21872021,21671033,22172022 and 22071019).
文摘Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composites(Al_(13)@MoO_(3))were successfully prepared by interpolating the Keggin-type polycationic AlO_(4)Al_(12)(OH)_(24)H_(2)O_(12)^(7+)(Al_(13))into MoO_(3)gallery.These composites can be applied to rapidly adsorb the anionic dye methyl orange(MO)through strong electrostatic interactions lead to compact and sta-ble gathering in the surrounding of the numerous charged Al_(13).Adsorption behaviors of composites with the different amount of Al_(13) were determined,these results revealed that Al_(13)-3.34%@MoO_(3)exhibited the most remarkable adsorption capacity.More importantly,the composite maintains superior adsorption capacity for five consecutive adsorption/desorption cycles,suggesting that Al_(13)@MoO_(3)can be an efficient and durable adsorbent.
基金Contribution No. 49 from the Microcalorimetry Research Center. Project supported by the National Natural Science Foundation of China.
文摘The heat capacities of La(NCS)_3. 7H_2O and Ce(NCS)_3. 7H_2O have been measured from 13 to 300K with a fully-automated adiabatic calorimeter. The construction and procedures of the calorimetric system are described in detail. No obvious thermal anomaly was observed for both compounds in the experimental temperature range. The polynomial equations for calculating the heat capacity values of the two compounds in the range 13—300K were obtained by the least-squares fitting based on the experimental C_p data. The C_p values below 13K were estimated by using the Debye and Einstein heat Capacity functions. The standard molar thermodynamic functions were calculated from 0 to 300K. Gibbs energies of formation were also calculated.
基金We thank the National Natural Science Foundation of China(Nos.20772088 and 21172163)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for funding this work.
文摘A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO at 90℃ for 5 h in nitrogen without external ligands.