Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface...FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.展开更多
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金supported by the National Natural Science Foundation of China(Grant nos.52272201,52072136,52172229,52302303,and 51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)+1 种基金the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,2022-KF-20)Fundamental Research Funds for the Central Universities(2023IVA106)for financial support
文摘FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.