铁硫化物因其较高的理论容量,被认为是一种很有前途的钠离子电池负极材料。然而,铁硫化物在充放电过程中存在较大的体积变化,导致其倍率性能和稳定性较差。本文通过简单的一步法策略,制备了一种具有三维簇状结构的硫掺杂碳包覆的Fe_(0.9...铁硫化物因其较高的理论容量,被认为是一种很有前途的钠离子电池负极材料。然而,铁硫化物在充放电过程中存在较大的体积变化,导致其倍率性能和稳定性较差。本文通过简单的一步法策略,制备了一种具有三维簇状结构的硫掺杂碳包覆的Fe_(0.95)S_(1.05)纳米球(Fe_(0.95)S_(1.05)@SC),并研究了其储钠性能。硫掺杂碳层可提高材料的导电率,缓解Fe_(0.95)S_(1.05)纳米球在反应过程中产生的体积膨胀,故提升了材料的稳定性。Fe_(0.95)S_(1.05)@SC的相互贯通的簇状结构,为电子和离子的传输提供了通道,使材料具备优异的倍率性能。在半电池体系中,Fe_(0.95)S_(1.05)@SC在0.1A·g^(-1)下循环100圈后,保留614.7 m Ah·g^(-1)的高比容量,10 A·g^(-1)下比容量仍可以达到235.7 m Ah·g^(-1)。在全电池体系中,在0.1和10 A·g^(-1)时,Fe_(0.95)S_(1.05)@SC的可逆容量分别为482.8和288.3 m Ah·g^(-1)。该材料具有良好电化学性能,在钠离子电池中具有广阔的应用前景。展开更多
文摘铁硫化物因其较高的理论容量,被认为是一种很有前途的钠离子电池负极材料。然而,铁硫化物在充放电过程中存在较大的体积变化,导致其倍率性能和稳定性较差。本文通过简单的一步法策略,制备了一种具有三维簇状结构的硫掺杂碳包覆的Fe_(0.95)S_(1.05)纳米球(Fe_(0.95)S_(1.05)@SC),并研究了其储钠性能。硫掺杂碳层可提高材料的导电率,缓解Fe_(0.95)S_(1.05)纳米球在反应过程中产生的体积膨胀,故提升了材料的稳定性。Fe_(0.95)S_(1.05)@SC的相互贯通的簇状结构,为电子和离子的传输提供了通道,使材料具备优异的倍率性能。在半电池体系中,Fe_(0.95)S_(1.05)@SC在0.1A·g^(-1)下循环100圈后,保留614.7 m Ah·g^(-1)的高比容量,10 A·g^(-1)下比容量仍可以达到235.7 m Ah·g^(-1)。在全电池体系中,在0.1和10 A·g^(-1)时,Fe_(0.95)S_(1.05)@SC的可逆容量分别为482.8和288.3 m Ah·g^(-1)。该材料具有良好电化学性能,在钠离子电池中具有广阔的应用前景。