Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to eith...Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.展开更多
Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existen...Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existence of anatase phases.It has been found that the TiO_(2)(B)'s purity is positively correlated with its electrochemical performance.Herein,we have established an accurate quantification of the TiO_(2)(B)/anatase ratio,by figuring out the function between the purity of TiO_(2)(B)phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction(XRD).Compared with the time-consuming electrochemical method,the rapid,sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO_(2)(B).Further,the correlations developed in this work should be instructive in synthesizing pure TiO_(2)(B)and furthermore optimizing its electrochemical charge storage properties.展开更多
Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analys...Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.展开更多
The melting behavior,solid state phase transformation and structure of pseudo-ternary compounds Nd_2(Fe_(1-x)Ni_x)_(14)B and Pr_2(Co_(1-y)Ni_y)_(14)B were studied using differential thermal analysis,optical microscopy...The melting behavior,solid state phase transformation and structure of pseudo-ternary compounds Nd_2(Fe_(1-x)Ni_x)_(14)B and Pr_2(Co_(1-y)Ni_y)_(14)B were studied using differential thermal analysis,optical microscopy X-ray diffraction,and electron probe micro-analysis techniques.At high temperature,eutectoid decomposition R_2(Ni,M)_(17)→R(Ni,M)_5+x-Ni(M) takes place in these two pseudo-ternary compounds,in the composition range x=0.6~1.0 and y=0.3~1.0,respectively.When x(or y)≤0.2,both Nd_2(Fe_(1-x)Ni_x)_(14)B and Pr_2(Co_(1-y)Ni_y)_(14)B are single phase tetragonal.The phase constitutents of these two systems at room tempera- ture are similar in the composition range 0.6≤x(or y)≤1.0.展开更多
Based on the observation of temperature variation of both domain structure and magnetic con- trast.the thermal demagnetization and randomness of domain nucleation was discussed.
基金This research is supported by the National Natural Science Foundation of China (51932003,51872115)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province (20200801001GH)+5 种基金Program for the Development of Science and Technology of Jilin Province (20190201309JC)the Jilin Province/Jilin University Co-Construction Project-Funds for New Materials (SXGJSF2017-3,Branch-2/440050316A36)Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission (2021C026)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities JLU,and“Double-First Class”Discipline for Materials Science&Engineering.
文摘Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.
基金This work was financially supported by the National Natural Science Foundation of China(22075074)Outstanding Young Scientists Research Funds from Hunan Province(2020JJ2004)+3 种基金Major Science and Technology Program of Hunan Province(2020WK2013)Natural Science Foundation of Hunan Province(2020JJ5035)National Natural Science Foundation of China(Grant No.11704185)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL201802SIC).
文摘Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existence of anatase phases.It has been found that the TiO_(2)(B)'s purity is positively correlated with its electrochemical performance.Herein,we have established an accurate quantification of the TiO_(2)(B)/anatase ratio,by figuring out the function between the purity of TiO_(2)(B)phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction(XRD).Compared with the time-consuming electrochemical method,the rapid,sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO_(2)(B).Further,the correlations developed in this work should be instructive in synthesizing pure TiO_(2)(B)and furthermore optimizing its electrochemical charge storage properties.
基金supported by the National Natural Science Foundation of China(No.21607003).
文摘Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.
基金the National Natural Science Fundation of China.
文摘The melting behavior,solid state phase transformation and structure of pseudo-ternary compounds Nd_2(Fe_(1-x)Ni_x)_(14)B and Pr_2(Co_(1-y)Ni_y)_(14)B were studied using differential thermal analysis,optical microscopy X-ray diffraction,and electron probe micro-analysis techniques.At high temperature,eutectoid decomposition R_2(Ni,M)_(17)→R(Ni,M)_5+x-Ni(M) takes place in these two pseudo-ternary compounds,in the composition range x=0.6~1.0 and y=0.3~1.0,respectively.When x(or y)≤0.2,both Nd_2(Fe_(1-x)Ni_x)_(14)B and Pr_2(Co_(1-y)Ni_y)_(14)B are single phase tetragonal.The phase constitutents of these two systems at room tempera- ture are similar in the composition range 0.6≤x(or y)≤1.0.
文摘Based on the observation of temperature variation of both domain structure and magnetic con- trast.the thermal demagnetization and randomness of domain nucleation was discussed.