The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt...The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt Pt,Fe+"FeOM"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)TiO_(5)+TiO_(2),Pt From the experimental data,the Gibbs energies of formation of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were obtained:△G^(0)_(pr)(kJ·mol^(-1))=3459.7-0.847T,(1053K<T<1153K) △G^(0)_(pb)(kJ·mol^(-1))=-1700.2-0.465T,(1173K<T<1273K) Experimental results fit approximately to those of estimation.展开更多
The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning m...The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.展开更多
基金Supported by the National Natural Science Foundation of Chinathe Committee of Science and Technology of Liaoning Province and the State Education Committee of China。
文摘The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt Pt,Fe+"FeOM"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)TiO_(5)+TiO_(2),Pt From the experimental data,the Gibbs energies of formation of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were obtained:△G^(0)_(pr)(kJ·mol^(-1))=3459.7-0.847T,(1053K<T<1153K) △G^(0)_(pb)(kJ·mol^(-1))=-1700.2-0.465T,(1173K<T<1273K) Experimental results fit approximately to those of estimation.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20170549)the National Natural Science Foundation of China(No.21706103)+1 种基金the China Postdoctoral Science Foundation(No.2019T120393)the Postdoctoral Science Foundation of Jiangsu Province(No.2019K295)。
文摘The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.