Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier t...Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.展开更多
Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analys...Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.展开更多
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(...High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.展开更多
The low surface area,high recombination rate of photogenerated charge carriers,narrow visible range activity,and difficulty in the separation from cleaned solutions limit the wide application of g-C_(3)N_(4) as a phot...The low surface area,high recombination rate of photogenerated charge carriers,narrow visible range activity,and difficulty in the separation from cleaned solutions limit the wide application of g-C_(3)N_(4) as a photocatalyst.Herein,we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C_(3)N_(4).The broadening of the visible-light response range and inducing magnetic nature to g-C_(3)N_(4) was succeeded by preparing a nanocomposite with Fe_(2)O_(3) via a facile solvothermal method.The preparation method additionally imparted layer exfoliation of g-C_(3)N_(4) as evident from the XRD patterns and TEM images.The strong interaction between the components is revealed from the XPS analysis.The broadened visible-light absorbance of Fe_(2)O_(3)/g-C_(3)N_(4) with a Z-scheme photocatalytic degradation mechanism is well evident from the UV-Vis DRS analysis and PL measurement of the composite with terephthalic acid.The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe_(2)O_(3)/g-C_(3)N_(4).展开更多
基金Science and Technology Project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China(No.2014-K7-007)。
文摘Fe_(3)O_(4)and Cu_(2)O were successively immobilized on alkali-treated straw,and the magnetically separable straw@Fe_(3)O_(4)/Cu_(2)O composite was obtained.The straw@Fe_(3)O_(4)/Cu_(2)O was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy and vibrating sample magnetometry,respectively.Photocatalytic performance of the straw@Fe_(3)O_(4)/Cu_(2)O was evaluated by measuring the degradation of methyl orange(MO)under irradiation of visible light.The introduction of Fe3O4 not only endowed the straw@Fe_(3)O_(4)/Cu_(2)O with magnetic separation feature but also significantly enhanced photocatalytic activity because Fe3O4 could prevent recombination of hole-electron pairs.The active species capture experiment showed that holes(h+),hydroxyl(∙OH)and superoxide(∙O2ˉ)radicals all took part in the MO degradation.In addition,the photocatalytic mechanism of straw@Fe_(3)O_(4)/Cu_(2)O was proposed based on the experimental results.After five cycles for the photodegradation of MO,the straw@Fe_(3)O_(4)/Cu_(2)O still displayed good photocatalytic activity,suggesting that the as-prepared composite had great potential for practical use in wastewater treatment.
基金supported by the National Natural Science Foundation of China(No.21607003).
文摘Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093 and 52203100)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)。
文摘High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.
文摘The low surface area,high recombination rate of photogenerated charge carriers,narrow visible range activity,and difficulty in the separation from cleaned solutions limit the wide application of g-C_(3)N_(4) as a photocatalyst.Herein,we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C_(3)N_(4).The broadening of the visible-light response range and inducing magnetic nature to g-C_(3)N_(4) was succeeded by preparing a nanocomposite with Fe_(2)O_(3) via a facile solvothermal method.The preparation method additionally imparted layer exfoliation of g-C_(3)N_(4) as evident from the XRD patterns and TEM images.The strong interaction between the components is revealed from the XPS analysis.The broadened visible-light absorbance of Fe_(2)O_(3)/g-C_(3)N_(4) with a Z-scheme photocatalytic degradation mechanism is well evident from the UV-Vis DRS analysis and PL measurement of the composite with terephthalic acid.The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe_(2)O_(3)/g-C_(3)N_(4).