Inspired by the recently predicted 2D MX_(2)Y_(6)(M=metal element;X=Si/Ge/Sn;Y=S/Se/Te),we explore the possible applications of alkaline earth metal(using magnesium as example)in this family based on the idea of eleme...Inspired by the recently predicted 2D MX_(2)Y_(6)(M=metal element;X=Si/Ge/Sn;Y=S/Se/Te),we explore the possible applications of alkaline earth metal(using magnesium as example)in this family based on the idea of element replacement and valence electron balance.Herein,we report a new family of 2D quaternary compounds,namely MgMX_(2)Y_(6)(M=Ti/Zr/Hf;X=Si/Ge;Y=S/Se/Te)monolayers,with superior kinetic,thermodynamic and mechanical stability.In addition,our results indicate that MgMX_(2)Y_(6)monolayers are all indirect band gap semiconductors with band gap values ranging from 0.870 to 2.500 eV.Moreover,the band edges and optical properties of 2D MgMX_(2)Y_(6)are suitable for constructing multifunctional optoelectronic devices.Furthermore,for comparison,the mechanical,electronic and optical properties of In_(2)X_(2)Y_(6)monolayers have been discussed in detail.The success of introducing Mg into the 2D MX_(2)Y_(6)family indicates that more potential materials,such as Caand Sr-based 2D MX_(2)Y_(6)monolayers,may be discovered in the future.Therefore,this work not only broadens the existing family of 2D semiconductors,but it also provides beneficial results for the future.展开更多
In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visibl...In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visible light detection perfor-mance of the heterojunction device.At 380 nm,the responsivity and detectivity of TiO_(2)@GaO_(x)N_(y)-Ag were 0.94 A/W and 4.79×109 Jones,respectively,and they increased to 2.86 A/W and 7.96×1010 Jones at 580 nm.The rise and fall times of the response were 0.19/0.23 and 0.50/0.57 s,respectively.Uniquely,at 580 nm,the responsivity of fabricated devices is one to four orders of magnitude higher than that of the photodetectors based on TiO_(2),Ga_(2)O_(3),and other heterojunctions.The excellent optoelectronic characteristics of the TiO_(2)@GaO_(x)N_(y)-Ag heterojunction device could be mainly attributed to the synergistic effect of the type-Ⅱband structure of the metal-semiconductor-metal heterojunction and the plasmon resonance effect of Ag,which not only effectively promotes the separation of photogenerated carriers but also reduces the recombination rate.It is fur-ther illuminated by finite difference time domain method(FDTD)simulation and photoelectric measurements.The TiO_(2)@GaO_(x)N_(y)-Ag arrays with high-efficiency detection are suitable candidates for applications in energy-saving communica-tion,imaging,and sensing networks.展开更多
Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(...Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61974049, 62222404 61974050)National Key Research and Development Plan of China (Grant No. 2021YFB3601200)
文摘Inspired by the recently predicted 2D MX_(2)Y_(6)(M=metal element;X=Si/Ge/Sn;Y=S/Se/Te),we explore the possible applications of alkaline earth metal(using magnesium as example)in this family based on the idea of element replacement and valence electron balance.Herein,we report a new family of 2D quaternary compounds,namely MgMX_(2)Y_(6)(M=Ti/Zr/Hf;X=Si/Ge;Y=S/Se/Te)monolayers,with superior kinetic,thermodynamic and mechanical stability.In addition,our results indicate that MgMX_(2)Y_(6)monolayers are all indirect band gap semiconductors with band gap values ranging from 0.870 to 2.500 eV.Moreover,the band edges and optical properties of 2D MgMX_(2)Y_(6)are suitable for constructing multifunctional optoelectronic devices.Furthermore,for comparison,the mechanical,electronic and optical properties of In_(2)X_(2)Y_(6)monolayers have been discussed in detail.The success of introducing Mg into the 2D MX_(2)Y_(6)family indicates that more potential materials,such as Caand Sr-based 2D MX_(2)Y_(6)monolayers,may be discovered in the future.Therefore,this work not only broadens the existing family of 2D semiconductors,but it also provides beneficial results for the future.
基金supported by National Natural Science Foundation of China(Nos.62027818,61874034,and 51861135105)Natural Science Foundation of Shanghai(No.18ZR1405000)Shanghai Science and Technology Innovation Program(No.19520711500).
文摘In this work,we reported a high-performance-based ultraviolet-visible(UV-VIS)photodetector based on a TiO_(2)@GaO_(x)N_(y)-Ag heterostructure.Ag particles were introduced into TiO_(2)@GaO_(x)N_(y)to enhance the visible light detection perfor-mance of the heterojunction device.At 380 nm,the responsivity and detectivity of TiO_(2)@GaO_(x)N_(y)-Ag were 0.94 A/W and 4.79×109 Jones,respectively,and they increased to 2.86 A/W and 7.96×1010 Jones at 580 nm.The rise and fall times of the response were 0.19/0.23 and 0.50/0.57 s,respectively.Uniquely,at 580 nm,the responsivity of fabricated devices is one to four orders of magnitude higher than that of the photodetectors based on TiO_(2),Ga_(2)O_(3),and other heterojunctions.The excellent optoelectronic characteristics of the TiO_(2)@GaO_(x)N_(y)-Ag heterojunction device could be mainly attributed to the synergistic effect of the type-Ⅱband structure of the metal-semiconductor-metal heterojunction and the plasmon resonance effect of Ag,which not only effectively promotes the separation of photogenerated carriers but also reduces the recombination rate.It is fur-ther illuminated by finite difference time domain method(FDTD)simulation and photoelectric measurements.The TiO_(2)@GaO_(x)N_(y)-Ag arrays with high-efficiency detection are suitable candidates for applications in energy-saving communica-tion,imaging,and sensing networks.
基金Supported from the Regional Leading Research Center Program(2019R1A5A8080326)through the National Research Foundation funded by the Ministry of Science and ICT of Republic of Korea.
文摘Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.