As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer...Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.展开更多
Crystal structure of γ-Li_xFe_2O_3,inserted Li electrochemically,was studied by Moss- bauer spectroscopy together with X-ray diffraction,XPS and electrochemical method,On the insertion of Li at low current density,th...Crystal structure of γ-Li_xFe_2O_3,inserted Li electrochemically,was studied by Moss- bauer spectroscopy together with X-ray diffraction,XPS and electrochemical method,On the insertion of Li at low current density,the crystal structure is keeping original spinel; while at higher current density or by thermal activation,owing to violent movement of Li^+ ions,part of crystal structure transforms into rock type similar to face-centered cubic structure of ferrous oxide.The transition channels during insertion of Li^+ ions and limitation of Li^+ ions inserted were discussed.展开更多
Ultrafine α-Fe2O3 particles were prepared from l.0 mol/L Fe(OH)3 gel by dispelling oven hydrothermal method and characterized by measurement of SEM and XRD.The results showed that the reactions could be finished at...Ultrafine α-Fe2O3 particles were prepared from l.0 mol/L Fe(OH)3 gel by dispelling oven hydrothermal method and characterized by measurement of SEM and XRD.The results showed that the reactions could be finished at 148℃ in 30~90 minutes,anions of iron(Ⅲ)salts and original pH values in suspension had remarkable effects on the morphology and size of α-Fe2O3 particles.Using FeCl3 as starting raw material,the pesudocubic particles with the mean size of 350 nm were obtained at pH 2.5 and the spherical particles with the mean size less than 170 nm were produced above pH 6.0.At the same time,using FeSO43 and Fe(NO3)3 as starting raw materials at pH 2.5,the resulting products were ellipsoidal particles with the mean size of 100 nm and spherical particles with the mean size of 120 nm,respectively.展开更多
Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-ind...Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-index faceted iron oxide(Fe_(2)O_(3))nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts,effectively improving the electrochemical performance of Li-S batteries.The theoretical and experimental results all indicate that high-index Fe_(2)O_(3)crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li_(2)S.The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g^(-1)at 0.1 C and excellent cycling performance with a low capacity fading of 0.025%per cycle during 1600 cycles at 2 C.Even with a high sulfur loading of 9.41 mg cm^(-2),a remarkable areal capacity of 7.61 mAh cm^(-2)was maintained after 85 cycles.This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering,deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry,affording a novel perspective for the design of advanced sulfur electrodes.展开更多
Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analys...Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.展开更多
We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garne...We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garnet solid electrolyte during the calcination process of 850 ℃ and then the cubic phase of LLZO is obtained after successive annealing step of 1000 ℃. Comparing to pristine LLZO, AI incorporated LLZO shows less formation of Li_2CO_3, keeping crystallographic and physicochemical properties. This AI incorporation im- proves both the ionic conductivity and interfacial resistance to poisoning procedure.展开更多
Na-based layered transition metal oxides with O_(3)-type structure have been considered to be promising cathodes for Na-ion batteries. However, the intrinsically limited Na-ion conductivity induced by the Otype Na-coo...Na-based layered transition metal oxides with O_(3)-type structure have been considered to be promising cathodes for Na-ion batteries. However, the intrinsically limited Na-ion conductivity induced by the Otype Na-coordinate environment compromises their rate and cycle capability, hindering their practical application. Here, we report an interphase-structure tailoring strategy that improves the electrochemical properties of O_(3)-type layered cathodes achieved through surface coating and doping processes.Specifically, a Zr-doped interphase structure is designed in the model compound NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2) using the ionic conductor Na_(3)Zr_(2)Si_(2)PO_(12) as the surface coating material and Zr-dopant provider. We discover that the modified NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)cathode shows a stable Na-storage structure as well as an enhanced rate/cycle capability. Combined with theoretical calculations, it is suggested that the superior electrochemical performances originate from the Zr-doped interphase structure, which has an enlarged Na layer spacing that forms favorable Na-ion diffusion channels. This work highlights a general material interface optimization method which opens a new perspective for fabricating high-performance electrodes for Na-ion batteries and beyond.展开更多
Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were ...Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were investigated by means of XRD,FESEM and other methods as well.The results showed that the glass transition temperature and crystallization temperature of samples increased as the content of Al_(2)O_(3)increased from 4.1 wt%to 13.1 wt%,which restrained the precipitation of lithium disilicate crystals.The main crystalline phase of glass-ceramics transformed from lithium disilicate and petalite to silicon dioxide,which reduced the fracture toughness of glass-ceramics.When the Al_(2)O_(3)content was 7.1 wt%,the specimen had outstanding transmittance and fracture toughness.The transmittance was 90.32%.The fracture toughness was 1.13 MPa•m^(1/2).Compared with high-alumina glass,the fracture toughness of the glass-ceramic was greatly improved,and it could be used as a new type of protective material for mobile devices.展开更多
The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffr...The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.展开更多
Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was sign...Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.展开更多
The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures.The smelting reduction of titanomagnetite and ilmenite o...The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures.The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace(BF)can form Ti(C,N)particles,causing the increased viscosities of slag and hot metal.HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter.The formation of Ti(C,N)in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF.The smelting of TiO_(2)-containing ores in the HIsmelt process results in Al_(2)O_(3)-MgO-SiO_(2)-CaO-TiO_(2)slag.Phase equilibrium in this slag system has been investigated using equilibration,quenching,and electron probe microanalysis techniques.The experimental results were presented in two pseudo-binary sections,which represent the process of HIsmelt for the treatment of 100%titanomagnetite ore and mixed titanomagnetite+ilmenite ore(mass ratio of 2:1),respectively.The primary phases observed in the composition range investigated include pseudo-brookite M_(3)O_(5)(MgO·2TiO_(2)-Al_(2)O_(3)·TiO_(2)),spinel(MgO·Al_(2)O_(3)),perovskite CaTiO_(3),and rutile TiO_(2).The results show that the liquidus temperatures decrease in the TiO_(2)and M_(3)O_(5) primary phase fields and increase in the spinel and CaTiO_(3)primary phase fields with the increase in CaO concentration.The calculation of solid-phase fractions from the experimental data has been demonstrated.The effect of basicity on the liquidus temperatures of the slag has been discussed.The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO_(2)slag.Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.展开更多
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.
文摘Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.
文摘Crystal structure of γ-Li_xFe_2O_3,inserted Li electrochemically,was studied by Moss- bauer spectroscopy together with X-ray diffraction,XPS and electrochemical method,On the insertion of Li at low current density,the crystal structure is keeping original spinel; while at higher current density or by thermal activation,owing to violent movement of Li^+ ions,part of crystal structure transforms into rock type similar to face-centered cubic structure of ferrous oxide.The transition channels during insertion of Li^+ ions and limitation of Li^+ ions inserted were discussed.
文摘Ultrafine α-Fe2O3 particles were prepared from l.0 mol/L Fe(OH)3 gel by dispelling oven hydrothermal method and characterized by measurement of SEM and XRD.The results showed that the reactions could be finished at 148℃ in 30~90 minutes,anions of iron(Ⅲ)salts and original pH values in suspension had remarkable effects on the morphology and size of α-Fe2O3 particles.Using FeCl3 as starting raw material,the pesudocubic particles with the mean size of 350 nm were obtained at pH 2.5 and the spherical particles with the mean size less than 170 nm were produced above pH 6.0.At the same time,using FeSO43 and Fe(NO3)3 as starting raw materials at pH 2.5,the resulting products were ellipsoidal particles with the mean size of 100 nm and spherical particles with the mean size of 120 nm,respectively.
基金This work was supported by the National Natural Science Foundation of China(No.22078078)the Natural Science Foundation of Heilongjiang Province(No.LH2020B008)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2019DX13).
文摘Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-index faceted iron oxide(Fe_(2)O_(3))nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts,effectively improving the electrochemical performance of Li-S batteries.The theoretical and experimental results all indicate that high-index Fe_(2)O_(3)crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li_(2)S.The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g^(-1)at 0.1 C and excellent cycling performance with a low capacity fading of 0.025%per cycle during 1600 cycles at 2 C.Even with a high sulfur loading of 9.41 mg cm^(-2),a remarkable areal capacity of 7.61 mAh cm^(-2)was maintained after 85 cycles.This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering,deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry,affording a novel perspective for the design of advanced sulfur electrodes.
基金supported by the National Natural Science Foundation of China(No.21607003).
文摘Residues of tetracycline antibiotics(TCs) in environments may be harmful to human.Due to their high polarities,it is extremely challenging to efficiently enrich TCs with low concentrations in natural waters for analysis.In this work,a magnetic metal-organic framework Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]was synthesized and applied as a dispersive micro-solid phase extraction adsorbent for TCs enrichment.Effects of dispersive micro-solid phase extraction conditions including extraction time,solution p H,and elution solvent on the extraction efficiencies of TCs were investigated.Results show that TCs could be enriched efficiently by Fe_(3)O_(4)@[Cu_(3)(btc)_(2)],and electrostatic interaction between TCs and Fe_(3)O_(4)@[Cu_(3)(btc)_(2)]dominated this process.Combined with liquid chromatography-tandem mass spectrometry,four TCs residues (oxytetracycline,tetracycline,chlortetracycline,and doxycycline) in natural waters were determined.The detection limits (LOD,S/N=3) of the four antibiotics were 0.01-0.02μg/L,and the limits of quantitation (LOQ,S/N=10)were 0.04-0.07μg/L.The recoveries obtained from river water and aquaculture water spiked with three TCs concentration levels ranged from 70.3%to 96.5%with relative standard deviations of 3.8%-12.8%.Results indicate that the magnetic metal-organic framework based dispersive micro-solid phase extraction is simple,rapid and high-loading for antibiotics enrichment from water,which further expand the practical application of metal-organic frameworks in sample pretreatment for environmental pollutant analysis.
基金financial support from the R&D Convergence Program (CAP-14-02-KITECH)the National Research Council of Science & Technology of the Republic of Korea
文摘We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garnet solid electrolyte during the calcination process of 850 ℃ and then the cubic phase of LLZO is obtained after successive annealing step of 1000 ℃. Comparing to pristine LLZO, AI incorporated LLZO shows less formation of Li_2CO_3, keeping crystallographic and physicochemical properties. This AI incorporation im- proves both the ionic conductivity and interfacial resistance to poisoning procedure.
基金The University of Chinese Academy of Sciences,and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (ZDKYYQ20170001):China the Guangdong Basic and Applied Basic Research Foundation (2019A1515111025) China the Japan Synchrotron Radiation Research Institute (2019B1096)Japan。
文摘Na-based layered transition metal oxides with O_(3)-type structure have been considered to be promising cathodes for Na-ion batteries. However, the intrinsically limited Na-ion conductivity induced by the Otype Na-coordinate environment compromises their rate and cycle capability, hindering their practical application. Here, we report an interphase-structure tailoring strategy that improves the electrochemical properties of O_(3)-type layered cathodes achieved through surface coating and doping processes.Specifically, a Zr-doped interphase structure is designed in the model compound NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2) using the ionic conductor Na_(3)Zr_(2)Si_(2)PO_(12) as the surface coating material and Zr-dopant provider. We discover that the modified NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)cathode shows a stable Na-storage structure as well as an enhanced rate/cycle capability. Combined with theoretical calculations, it is suggested that the superior electrochemical performances originate from the Zr-doped interphase structure, which has an enlarged Na layer spacing that forms favorable Na-ion diffusion channels. This work highlights a general material interface optimization method which opens a new perspective for fabricating high-performance electrodes for Na-ion batteries and beyond.
基金State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.2011DA105356)。
文摘Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were investigated by means of XRD,FESEM and other methods as well.The results showed that the glass transition temperature and crystallization temperature of samples increased as the content of Al_(2)O_(3)increased from 4.1 wt%to 13.1 wt%,which restrained the precipitation of lithium disilicate crystals.The main crystalline phase of glass-ceramics transformed from lithium disilicate and petalite to silicon dioxide,which reduced the fracture toughness of glass-ceramics.When the Al_(2)O_(3)content was 7.1 wt%,the specimen had outstanding transmittance and fracture toughness.The transmittance was 90.32%.The fracture toughness was 1.13 MPa•m^(1/2).Compared with high-alumina glass,the fracture toughness of the glass-ceramic was greatly improved,and it could be used as a new type of protective material for mobile devices.
文摘The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.
文摘Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.
文摘The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures.The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace(BF)can form Ti(C,N)particles,causing the increased viscosities of slag and hot metal.HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter.The formation of Ti(C,N)in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF.The smelting of TiO_(2)-containing ores in the HIsmelt process results in Al_(2)O_(3)-MgO-SiO_(2)-CaO-TiO_(2)slag.Phase equilibrium in this slag system has been investigated using equilibration,quenching,and electron probe microanalysis techniques.The experimental results were presented in two pseudo-binary sections,which represent the process of HIsmelt for the treatment of 100%titanomagnetite ore and mixed titanomagnetite+ilmenite ore(mass ratio of 2:1),respectively.The primary phases observed in the composition range investigated include pseudo-brookite M_(3)O_(5)(MgO·2TiO_(2)-Al_(2)O_(3)·TiO_(2)),spinel(MgO·Al_(2)O_(3)),perovskite CaTiO_(3),and rutile TiO_(2).The results show that the liquidus temperatures decrease in the TiO_(2)and M_(3)O_(5) primary phase fields and increase in the spinel and CaTiO_(3)primary phase fields with the increase in CaO concentration.The calculation of solid-phase fractions from the experimental data has been demonstrated.The effect of basicity on the liquidus temperatures of the slag has been discussed.The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO_(2)slag.Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.