The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud...The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.展开更多
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD...The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.展开更多
The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and agin...The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.展开更多
The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission e...The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.展开更多
Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments ...Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.展开更多
The precipitation behavior, mechanical properties and corrosion resistance of a novel Al-Zn-Mg-Sc-Zr alloy aged at different time were studied by optical microscopy(OM), scanning electron microscopy(SEM), transmis...The precipitation behavior, mechanical properties and corrosion resistance of a novel Al-Zn-Mg-Sc-Zr alloy aged at different time were studied by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), tensile tests, potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that with increasing aging time at 120 ℃, the hardness and tensile strength of the alloy increased rapidly at first and then slightly decreased. The resistance of exfoliation corrosion(EXCO) and intergranular corrosion(IGC) increased gradually with increasing aging time. The same trend of corrosion properties was demonstrated by electrochemical polarization curves and EIS test. The characteristics of grain boundary precipitates and precipitate free zone(PFZ) had a significant influence on the mechanical and corrosion behaviors of the studied alloy. On the basis of TEM observations, the size of grain boundary precipitates and the width of PFZ became larger, and the distributed spacing of grain boundary precipitates was enhanced with increasing aging time.展开更多
Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr (mass fraction, %) alloys were prepared by water chilling copper mould ingot metallurgy processing which was protected by active flux. The recrystallization temperature and nucleation mec...Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr (mass fraction, %) alloys were prepared by water chilling copper mould ingot metallurgy processing which was protected by active flux. The recrystallization temperature and nucleation mechanism of the alloy were studied by means of hardness tests, observations of optical microscopy and transmission electron microscopy. The results show that the anti-crystallization ability can be significantly improved by adding minor Sc and Zr into Al-Mg-Mn alloy. This can be proved by a much higher recrystalliztion temperature (450 ~C) than Al-Mg-Mn alloy without Sc and Zr (150 ℃). The main reason of the great increase of recrystallization temperature can be attributed to the strong pinning effect of highly disperseded Al3(Sc,Zr) particles on dislocations and sub-grain boundaries. The recrystallizing process reveals itself the nucleation mechanism of the alloy involving not only the sub-grain coalescence but also the sub-grain growth.展开更多
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f...The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.展开更多
The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centre...The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centres resulting in homogeneous distribution. However, the precipitation in the interdendritic regions is complex and the precipitation morphologies, helical-like and stripe-like shapes, were observed, which are composed of many spherical Al3Zr precipitates. The stripe-like precipitate clusters have preferential orientations along with the -100- Al directions, which is inferred to be related to θ′(Al2Cu) and θ phases. Addition of Cu can accelerate the L12→D023 structural transformation of the Al3Zr precipitate.展开更多
In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D nume...In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.展开更多
Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist ...Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).展开更多
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m...The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.展开更多
The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensi...The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensitivity of the 7xxx Al alloys were studied.The alloys with high Zn content and Sc addition exhibited higher hardness than the 7085 alloy at the position 3 mm away from the quenching end.The density ofηand T phases increased with the increase in Zn and Cu contents,and the Sc addition led to the formation of the Y phase and moreηphases at the position 120 mm away from the quenching end.Compared with the 7085 alloy,the high Zn−high Cu and Sc-added alloys exhibited higher quench sensitivity,while the simultaneous increase in Zn content and decrease in Cu content could enhance the hardness and reduce the quench sensitivity of the 7085 alloy.展开更多
A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X...A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X-raydiffraction analysis.The results show that serious segregation exists in as-cast alloy,and the primary phases are T(AlZnMgCu),S(Al2CuMg)and Al8Cu4Er,which preferentially locate in the grain boundary regions.The soluble T(AlZnMgCu)and S(Al2CuMg)phases dissolve into the matrix gradually during single-stage homogenized at465°C with prolonging holding time,but the residualAl8Cu4Er phase cannot dissolve completely.Compared with the single-stage homogenization,both a finer particle size and a highervolume fraction of L12-structured Al3(Er,Zr)dispersoids can be obtained in the two-stage homogenization process.A suitablehomogenization scheme for the present alloy is(400°C,10h)+(465°C,24h),which is consistent with the results of homogenizationkinetic analysis.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
A high performance Ni-Al-Mo-B system cast Ni_3Al base alloy, named Alloy IC6, has been developed for advanced gas turbine blades and vanes. The alloy has high strength and ductility from room temperature to 1100℃ as...A high performance Ni-Al-Mo-B system cast Ni_3Al base alloy, named Alloy IC6, has been developed for advanced gas turbine blades and vanes. The alloy has high strength and ductility from room temperature to 1100℃ as well as excellent creep resistance over a wide temperature range of 760℃ to 1100℃ . The superior mechanical properties of this alloy.may be attributed to (1) solid solution hardening by the large amount of Mo addition , (2)second phase strengthening by γ-phase and other minor phases that precipitate in various temperature ranges, (3) rearrangement of γ-phase in the form of raft structure during creep deformation , (4) high-density misfit dislocation networks at the γ /γ' interfaces that form due to a high value ofγ /γ ' misfit .展开更多
: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint und...: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint under pressure of 12 MPa at 990℃ for 70 min was obtained to 797.6 MPa which approaches the base material strength. In addition, a short-time diffosion bonding process was studied in order to decrease the bonding cost. With the deformation of the specimens of 2.5% and the bonding temperature of 990℃ for 15 min, the bonding strength could reach 801 MPa.展开更多
The potency of Al3Zr and Al3Nb as grain refiners for Al alloys was investigated from a crystallographic point of view using the edge-to-edge matching (E2EM) model. The results show that both Al3Zr and Al3Nb have sma...The potency of Al3Zr and Al3Nb as grain refiners for Al alloys was investigated from a crystallographic point of view using the edge-to-edge matching (E2EM) model. The results show that both Al3Zr and Al3Nb have small values of interatomic spacing misfit and interplanar spacing mismatch with respect to Al. Furthermore, energetically favourable orientation relationships predicted by the model exist between Al and each of these two intermetallic phases. In the light of the edge-to-edge matching model predictions, it is suggested that both Al3Zr and Al3Nb are potent heterogeneous nucleation refiners for Al grains from the crystallographic point of view. The present crystallographic analysis provides a more reasonable explanation for the significant grain refinement obtained in the peritectic Al-Zr and Al-Nb alloys and also provides fresh insight into the understanding of the grain refinement mechanism of Al alloys.展开更多
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ...The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.展开更多
基金supported by the Key Research&Development Program of Yunnan Province(Grant numbers 202103AA080017,202203AE140011).
文摘The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.
基金Project(0211002605132)supported by Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences,ChinaProject(0211005303101)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2010BB4074)supported by Natural Science Foundation Project of CQ CSTC,ChinaProject(2010ZD-02)supported by State Key Laboratory for Advanced Metals and Materials,China
文摘The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject supported by Yuying Project of Central South University
文摘The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.
文摘Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProjects(51475266,51005134)supported by the National Natural Science Foundation of China
文摘The precipitation behavior, mechanical properties and corrosion resistance of a novel Al-Zn-Mg-Sc-Zr alloy aged at different time were studied by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), tensile tests, potentiodynamic polarization and electrochemical impedance spectroscopy. The results revealed that with increasing aging time at 120 ℃, the hardness and tensile strength of the alloy increased rapidly at first and then slightly decreased. The resistance of exfoliation corrosion(EXCO) and intergranular corrosion(IGC) increased gradually with increasing aging time. The same trend of corrosion properties was demonstrated by electrochemical polarization curves and EIS test. The characteristics of grain boundary precipitates and precipitate free zone(PFZ) had a significant influence on the mechanical and corrosion behaviors of the studied alloy. On the basis of TEM observations, the size of grain boundary precipitates and the width of PFZ became larger, and the distributed spacing of grain boundary precipitates was enhanced with increasing aging time.
基金Project(2012CB619503)supported by the National Basic Research Program of China
文摘Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr (mass fraction, %) alloys were prepared by water chilling copper mould ingot metallurgy processing which was protected by active flux. The recrystallization temperature and nucleation mechanism of the alloy were studied by means of hardness tests, observations of optical microscopy and transmission electron microscopy. The results show that the anti-crystallization ability can be significantly improved by adding minor Sc and Zr into Al-Mg-Mn alloy. This can be proved by a much higher recrystalliztion temperature (450 ~C) than Al-Mg-Mn alloy without Sc and Zr (150 ℃). The main reason of the great increase of recrystallization temperature can be attributed to the strong pinning effect of highly disperseded Al3(Sc,Zr) particles on dislocations and sub-grain boundaries. The recrystallizing process reveals itself the nucleation mechanism of the alloy involving not only the sub-grain coalescence but also the sub-grain growth.
基金Project(50871065) supported by the National Natural Science Foundation of ChinaProjects(08DJ1400402,09JC1407200,10DZ2290904) supported by the Science and Technology Committee of Shanghai Municipality,China
文摘The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.
基金Project (CDJZR12130048) supported by the Fundamental Research Funds for the Central Universities, ChinaProject supported by a Grant from the French Norwegian Foundation for Scientific and Technological Research and Industrial Development
文摘The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centres resulting in homogeneous distribution. However, the precipitation in the interdendritic regions is complex and the precipitation morphologies, helical-like and stripe-like shapes, were observed, which are composed of many spherical Al3Zr precipitates. The stripe-like precipitate clusters have preferential orientations along with the -100- Al directions, which is inferred to be related to θ′(Al2Cu) and θ phases. Addition of Cu can accelerate the L12→D023 structural transformation of the Al3Zr precipitate.
基金Projects (51005186,51221001) supported by the National Natural Science Foundation of ChinaProject (85-TZ-2013) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject (20126102110022) supported by the Doctoral Fund of Ministry of Education of China
文摘In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.
文摘Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).
基金Project (2016B090931004) supported by the Scientific and Research Plan of Guangdong Province, ChinaProject (51601229) supported by the National Natural Science Foundation of China。
文摘The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.
基金The authors are grateful for the financial supports from the Science and Technology Major Project of Guangxi,China(GKAA17202007).
文摘The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensitivity of the 7xxx Al alloys were studied.The alloys with high Zn content and Sc addition exhibited higher hardness than the 7085 alloy at the position 3 mm away from the quenching end.The density ofηand T phases increased with the increase in Zn and Cu contents,and the Sc addition led to the formation of the Y phase and moreηphases at the position 120 mm away from the quenching end.Compared with the 7085 alloy,the high Zn−high Cu and Sc-added alloys exhibited higher quench sensitivity,while the simultaneous increase in Zn content and decrease in Cu content could enhance the hardness and reduce the quench sensitivity of the 7085 alloy.
基金Project(2012CB619503) supported by the National Basic Research Program of ChinaProject(51201003) supported by the National Natural Science Foundation of ChinaProject(2142007) supported by Natural Science Foundation of Beijing,China
文摘A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X-raydiffraction analysis.The results show that serious segregation exists in as-cast alloy,and the primary phases are T(AlZnMgCu),S(Al2CuMg)and Al8Cu4Er,which preferentially locate in the grain boundary regions.The soluble T(AlZnMgCu)and S(Al2CuMg)phases dissolve into the matrix gradually during single-stage homogenized at465°C with prolonging holding time,but the residualAl8Cu4Er phase cannot dissolve completely.Compared with the single-stage homogenization,both a finer particle size and a highervolume fraction of L12-structured Al3(Er,Zr)dispersoids can be obtained in the two-stage homogenization process.A suitablehomogenization scheme for the present alloy is(400°C,10h)+(465°C,24h),which is consistent with the results of homogenizationkinetic analysis.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.
文摘A high performance Ni-Al-Mo-B system cast Ni_3Al base alloy, named Alloy IC6, has been developed for advanced gas turbine blades and vanes. The alloy has high strength and ductility from room temperature to 1100℃ as well as excellent creep resistance over a wide temperature range of 760℃ to 1100℃ . The superior mechanical properties of this alloy.may be attributed to (1) solid solution hardening by the large amount of Mo addition , (2)second phase strengthening by γ-phase and other minor phases that precipitate in various temperature ranges, (3) rearrangement of γ-phase in the form of raft structure during creep deformation , (4) high-density misfit dislocation networks at the γ /γ' interfaces that form due to a high value ofγ /γ ' misfit .
文摘: The effects of diffusion bonding temperature and holding time on the joint strength of Ti3Al base alloy has been investigated in this paper. The shear strength of Ti-14Al-21Nb-3Mo-V alloy diffusion bonding joint under pressure of 12 MPa at 990℃ for 70 min was obtained to 797.6 MPa which approaches the base material strength. In addition, a short-time diffosion bonding process was studied in order to decrease the bonding cost. With the deformation of the specimens of 2.5% and the bonding temperature of 990℃ for 15 min, the bonding strength could reach 801 MPa.
基金the Australian Research Council for funding supportthe support of China Scholarship Council
文摘The potency of Al3Zr and Al3Nb as grain refiners for Al alloys was investigated from a crystallographic point of view using the edge-to-edge matching (E2EM) model. The results show that both Al3Zr and Al3Nb have small values of interatomic spacing misfit and interplanar spacing mismatch with respect to Al. Furthermore, energetically favourable orientation relationships predicted by the model exist between Al and each of these two intermetallic phases. In the light of the edge-to-edge matching model predictions, it is suggested that both Al3Zr and Al3Nb are potent heterogeneous nucleation refiners for Al grains from the crystallographic point of view. The present crystallographic analysis provides a more reasonable explanation for the significant grain refinement obtained in the peritectic Al-Zr and Al-Nb alloys and also provides fresh insight into the understanding of the grain refinement mechanism of Al alloys.
基金Project(SKLSP201853) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(51625505) supported by the National Science Fund for Distinguished Young Scholars of China+1 种基金Project(U1537203) supported by the Key Program Project of the Joint Fund of Astronomy and National Natural Science Foundation of ChinaProject(KYQD1801) supported by the Scientific Research Foundation of Tianjin University of Technology and Education,China
文摘The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.