期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design and Implementation of Prototype System for Online Handwritten Uyghur Character Recognition 被引量:1
1
作者 IBRAYIM Mayire HAMDULLA Askar 《Wuhan University Journal of Natural Sciences》 CAS 2012年第2期131-136,共6页
Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on i... Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on its modules.In the preprocessing procedure,we use the linear and nonlinear normalization based on dot density method.Both structural and statistical features are extracted due to the fact that there are some very similar characters in Uyghur literature.In clustering analysis,we adopt the dynamic clustering algorithm based on the minimum spanning tree(MST),and use the k-nearest neighbor matching classification as classifier.The testing results of prototype system show that the recognition rates for characters of the four different types(independent,suffix,intermediate,and initial type) are 74.67%,70.42%,63.33%,and 72.02%,respectively;the recognition rates for the case of five candidates for those characters are 94.34%,94.19%,93.15%,and 95.86%,respectively.The ideas and methods used in this paper have some commonality and usefulness for the recognition of other characters that belong to Altaic languages family. 展开更多
关键词 online handwriting recognition Uyghur characters feature extraction cluster analysis
原文传递
Fault Information Recognition for On-board Equipment of High-speed Railway Based on Multi-neural Network Collaboration
2
作者 Lu-Jie Zhou Jian-Wu Dang Zhen-Hai Zhang 《International Journal of Automation and computing》 EI CSCD 2021年第6期935-946,共12页
It is of great significance to guarantee the efficient statistics of high-speed railway on-board equipment fault information,which also improves the efficiency of fault analysis. Considering this background, this pape... It is of great significance to guarantee the efficient statistics of high-speed railway on-board equipment fault information,which also improves the efficiency of fault analysis. Considering this background, this paper presents an empirical exploration of named entity recognition(NER) of on-board equipment fault information. Based on the historical fault records of on-board equipment, a fault information recognition model based on multi-neural network collaboration is proposed. First, considering Chinese recorded data characteristics, a method of constructing semantic features and additional features based on character granularity is proposed. Then, the two feature representations are concatenated and passed into the gated convolutional layer to extract the dependencies from multiple different subspaces and adjacent characters in parallel. Next, the local features are transmitted to the bidirectional long short-term memory(BiLSTM) to learn long-term dependency information. On top of BiLSTM, the sequential conditional random field(CRF) is used to jointly decode the optimized tag sequence of the whole sentence. The model is tested and compared with other representative baseline models. The results show that the proposed model not only considers the language characteristics of on-board fault records, but also has obvious advantages on the performance of fault information recognition. 展开更多
关键词 Train control system Chinese named entity recognition(NER) character feature gating mechanism bidirectional long short-term memory(BiLSTM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部