Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory resear...Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research.In the present study,to effectively identify agricultural machinery operation mode,a feature deformation network with multi-range feature enhancement was proposed.First,a multi-range feature enhancement module was developed to fully explore the feature distribution of agricultural machinery trajectory data.Second,to further enrich the representation of trajectories,a feature deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps.Then,EfficientNet-B0 was used to extract features of different scales and depths from the feature map,select features highly relevant to the results,and finally accurately predict the mode of each trajectory point.To validate the effectiveness of the proposed method,experiments were conducted to compare the results with those of other methods on a dataset of real agricultural trajectories.On the corn and wheat harvester trajectory datasets,the model achieved accuracies of 96.88%and 96.68%,as well as F1 scores of 93.54%and 94.19%,exhibiting improvements of 8.35%and 9.08%in accuracy and 20.99%and 20.04%in F1 score compared with the current state-of-the-art method.展开更多
Through field geologic survey,fine interpretation of seismic reflection data and analysis of well drilling data,the differential deformation,tectonic transfer and controlling factors of the differential deformation of...Through field geologic survey,fine interpretation of seismic reflection data and analysis of well drilling data,the differential deformation,tectonic transfer and controlling factors of the differential deformation of the Gumubiezi Fault(GF)from east to west have been studied systematically.The study shows that GF started to move southward as a compressive decollement along the Miocene gypsum-bearing mudstone layer in the Jidike Formation at the Early Quaternary and thrust out of the ground surface at the northern margin of the Wensu Uplift,and the Gumubiezi anticline formed on the hanging wall of the GF.The displacement of the GF decreases gradually from 1.21 km in the east AA′transect to 0.39 km in the west CC′transect,and completely disappears in the west of the Gumubiezi anticline.One part of the displacement of the GF is converted into the forward thrust,and another part is absorbed by Gumubiezi anticline.The formation of the GF is related to the gypsum-bearing mudstone layer in the Jidike Formation and barrier of the Wensu Uplift.The differential deformation of the GF from east to west is controlled by the development difference of gypsum-bearing mudstone layer in the Jidike Formation.In the east part,gypsum-bearing mudstone layer in the Jidike Formation is thicker,the deformation of the duplex structure in the north of the profile transferred to the basin along gypsum-bearing mudstone layer;to the west of the Gumubiezi structural belt(GSB),the gypsum-bearing mudstone layer in Jidike Formation decreases in thickness,and the transfer quantity of deformation of the duplex structure along the gypsum-bearing mudstone layer to the basin gradually reduces.In contrast,on the west DD′profile,the gypsum-bearing mudstone is not developed,the deformation of the deep duplex structure cannot be transferred along the Jidike Formation into the basin,the deep thrust fault broke to the surface and the GF disappeared completely.The displacement of the GF to the west eventually disappeared,because the lateral ramp acts as the transitional fault between east and west part of GSB.展开更多
The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at...The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.展开更多
K416B Ni-based superalloy with high W content has good high temperature properties and low cost,which has a great development potential.To investigate the room temperature tensile property and the deformation feature ...K416B Ni-based superalloy with high W content has good high temperature properties and low cost,which has a great development potential.To investigate the room temperature tensile property and the deformation feature of K416B superalloy,tensile testing at room temperature was carried out,and optical microscopy (OM),scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the deformation and damage mechanisms.Results show that the main room temperature tensile deformation features of the K416B nickel-based superalloy are dislocations slipping in the matrix and shearing into γ’ phase.The <110> super-dislocations shearing into γ’ phase can form the anti-phase boundary two coupled (a/2)<110> partial-dislocations or decompose into the configuration of two (a/3)<112> partial dislocations plus stacking fault.In the later stage of tensile testing,the slip-lines with different orientations are activated in the grain,causing the stress concentration in the regions of block carbide or the porosity,and cracks initiate and propagate along these regions.展开更多
The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes correspon...The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes corresponding to the triaxial compressive test, pre-peak and post-peak unloading the confining pressure tests. The results show that compression deformation is the main cause of rock failure under loading condition. However, the strong dilatation leads to the rock failure along unloading direction. Rock failure happens even under little axial stress with confining pressure unloading. Poisson ratio increases with the decrease of confining pressure during the process of unloading. Elastic modulus increases slowly along with the decline of confining pressure, but decreases rapidly when unloaded to yielding strength. It shows that the weakening rate of rock intensity tends to be faster with easily failure under the unloading condition.展开更多
To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) ...To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) is selected as the experimental material. The influences of deformation temperature T and pre-annealing on deformation behavior, surface deformation characteristics and substructures of ECAP Fe were systematically studied. The results show that ECAP Fe undergoes a remarkable strain softening stage after a rapid strain hardening during uniaxial compression, and the softening degree and the yield strength avs first decrease and then increase with raising temperature. Pre-annealing at 400 ℃ effectively weakens the strain softening degree and increases trys. To understand the influence of deformation temperature on deformation behavior, as well as the relevant pre-annealing effect, deformation and damage characteristics and dislocation structures are studied in detail. In a word, the strain softening of ECAP Fe is associated not only with internal structural instability, but also with temperature, and pre-annealing at 400 ℃ improves high-temperature me- chanical properties of ECAP Fe.展开更多
This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy expos...This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32301691)the National Key R&D Program of China and Shandong Province,China(Grant No.2021YFB3901300)the National Precision Agriculture Application Project(Grant/Contract number:JZNYYY001).
文摘Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research.In the present study,to effectively identify agricultural machinery operation mode,a feature deformation network with multi-range feature enhancement was proposed.First,a multi-range feature enhancement module was developed to fully explore the feature distribution of agricultural machinery trajectory data.Second,to further enrich the representation of trajectories,a feature deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps.Then,EfficientNet-B0 was used to extract features of different scales and depths from the feature map,select features highly relevant to the results,and finally accurately predict the mode of each trajectory point.To validate the effectiveness of the proposed method,experiments were conducted to compare the results with those of other methods on a dataset of real agricultural trajectories.On the corn and wheat harvester trajectory datasets,the model achieved accuracies of 96.88%and 96.68%,as well as F1 scores of 93.54%and 94.19%,exhibiting improvements of 8.35%and 9.08%in accuracy and 20.99%and 20.04%in F1 score compared with the current state-of-the-art method.
基金Supported by the China National Science and Technology Major Project(2017ZX05008001,2016ZX05003001)
文摘Through field geologic survey,fine interpretation of seismic reflection data and analysis of well drilling data,the differential deformation,tectonic transfer and controlling factors of the differential deformation of the Gumubiezi Fault(GF)from east to west have been studied systematically.The study shows that GF started to move southward as a compressive decollement along the Miocene gypsum-bearing mudstone layer in the Jidike Formation at the Early Quaternary and thrust out of the ground surface at the northern margin of the Wensu Uplift,and the Gumubiezi anticline formed on the hanging wall of the GF.The displacement of the GF decreases gradually from 1.21 km in the east AA′transect to 0.39 km in the west CC′transect,and completely disappears in the west of the Gumubiezi anticline.One part of the displacement of the GF is converted into the forward thrust,and another part is absorbed by Gumubiezi anticline.The formation of the GF is related to the gypsum-bearing mudstone layer in the Jidike Formation and barrier of the Wensu Uplift.The differential deformation of the GF from east to west is controlled by the development difference of gypsum-bearing mudstone layer in the Jidike Formation.In the east part,gypsum-bearing mudstone layer in the Jidike Formation is thicker,the deformation of the duplex structure in the north of the profile transferred to the basin along gypsum-bearing mudstone layer;to the west of the Gumubiezi structural belt(GSB),the gypsum-bearing mudstone layer in Jidike Formation decreases in thickness,and the transfer quantity of deformation of the duplex structure along the gypsum-bearing mudstone layer to the basin gradually reduces.In contrast,on the west DD′profile,the gypsum-bearing mudstone is not developed,the deformation of the deep duplex structure cannot be transferred along the Jidike Formation into the basin,the deep thrust fault broke to the surface and the GF disappeared completely.The displacement of the GF to the west eventually disappeared,because the lateral ramp acts as the transitional fault between east and west part of GSB.
文摘The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.
基金financially supported by the National Basic Research Program of China(Nos.2010CB631200 and 2010CB631206)the National Natural Science Foundation of China(No.51701212,No.50931004,No.51571196,No.51601192 and No.51671188)+4 种基金the State Key Laboratory of Solidification Processing in NWPU(SKLSP201747)Liaoning Provincial Natural Science Foundation of China(No.2019-MS-336)the Key Regional Project of Science and Technology Service Network Program,Chinese Academy of Sciences(No.KFJ-STS-QYZX-079)the Youth Innovation Promotion Association Project,Chinese Academy of Sciences(2020)the National Science and Technology Major Project(J2019-VI-0018-0133)。
文摘K416B Ni-based superalloy with high W content has good high temperature properties and low cost,which has a great development potential.To investigate the room temperature tensile property and the deformation feature of K416B superalloy,tensile testing at room temperature was carried out,and optical microscopy (OM),scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the deformation and damage mechanisms.Results show that the main room temperature tensile deformation features of the K416B nickel-based superalloy are dislocations slipping in the matrix and shearing into γ’ phase.The <110> super-dislocations shearing into γ’ phase can form the anti-phase boundary two coupled (a/2)<110> partial-dislocations or decompose into the configuration of two (a/3)<112> partial dislocations plus stacking fault.In the later stage of tensile testing,the slip-lines with different orientations are activated in the grain,causing the stress concentration in the regions of block carbide or the porosity,and cracks initiate and propagate along these regions.
基金Project (51074178) supported by the National Natural Science Foundation of ChinaProject (20110162120056) supported by the Special Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011QNZT089) supported by the Young Teachers Boosting Special Subject of Central South University,China
文摘The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes corresponding to the triaxial compressive test, pre-peak and post-peak unloading the confining pressure tests. The results show that compression deformation is the main cause of rock failure under loading condition. However, the strong dilatation leads to the rock failure along unloading direction. Rock failure happens even under little axial stress with confining pressure unloading. Poisson ratio increases with the decrease of confining pressure during the process of unloading. Elastic modulus increases slowly along with the decline of confining pressure, but decreases rapidly when unloaded to yielding strength. It shows that the weakening rate of rock intensity tends to be faster with easily failure under the unloading condition.
基金financially supported by the National Natural Science Foundation of China (Nos. 51231002, 51271054, 51201077 and 50671023)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110042110017)the Fundamental Research Funds for the Central Universities of China (Nos. N110105001 and N120505001)
文摘To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) is selected as the experimental material. The influences of deformation temperature T and pre-annealing on deformation behavior, surface deformation characteristics and substructures of ECAP Fe were systematically studied. The results show that ECAP Fe undergoes a remarkable strain softening stage after a rapid strain hardening during uniaxial compression, and the softening degree and the yield strength avs first decrease and then increase with raising temperature. Pre-annealing at 400 ℃ effectively weakens the strain softening degree and increases trys. To understand the influence of deformation temperature on deformation behavior, as well as the relevant pre-annealing effect, deformation and damage characteristics and dislocation structures are studied in detail. In a word, the strain softening of ECAP Fe is associated not only with internal structural instability, but also with temperature, and pre-annealing at 400 ℃ improves high-temperature me- chanical properties of ECAP Fe.
文摘This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.