To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
Depth map contains the space information of objects and is almost free from the influence of light,and it attracts many research interests in the field of machine vision used for human detection.Therefore,hunting a su...Depth map contains the space information of objects and is almost free from the influence of light,and it attracts many research interests in the field of machine vision used for human detection.Therefore,hunting a suitable image feature for human detection on depth map is rather attractive.In this paper,we evaluate the performance of the typical features on depth map.A depth map dataset containing various indoor scenes with human is constructed by using Microsoft’s Kinect camera as a quantitative benchmark for the study of methods of human detection on depth map.The depth map is smoothed with pixel filtering and context filtering so as to reduce particulate noise.Then,the performance of five image features and a new feature is studied and compared for human detection on the dataset through theoretic analysis and simulation experiments.Results show that the new feature outperforms other descriptors.展开更多
The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of ta...The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of taking the contour geometric features into account,which may lead to mismatching in map boundaries and areas with intensive contours or extreme terrain changes.In light of this,it is put forward that a matching strategy from coarse to precious based on the contour geometric features.The proposed matching strategy can be described as follows.Firstly,the point sequence is converted to feature sequence according to a feature descriptive function based on curvature and angle of normal vector.Then the level of similarity among multi-source contours is calculated by using the longest common subsequence solution.Accordingly,the identical contours could be matched based on the above calculated results.In the experiment for the proposed method,the reliability and efficiency of the matching method are verified using simulative datasets and real datasets respectively.It has been proved that the proposed contour matching strategy has a high matching precision and good applicability.展开更多
Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description cons...Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description consisting of a stable local reference frame(LRF)and a feature descriptor based on local spatial voxels.First,an improved LRF was designed by incorporating distance weights into Z-and X-axis calculations.Subsequently,based on the LRF and voxel segmentation,a feature descriptor based on voxel homogenization was proposed.Moreover,uniform segmentation of cube voxels was performed,considering the eigenvalues of each voxel and its neighboring voxels,thereby enhancing the stability of the description.The performance of the descriptor was strictly tested and evaluated on three public datasets,which exhibited high descriptiveness,robustness,and superior performance compared with other current methods.Furthermore,the descriptor was applied to a 3D registration trial,and the results demonstrated the reliability of our approach.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
Background Feature matching technology is vital to establish the association between virtual and real objects in virtual reality and augmented reality systems.Specifically,it provides them with the ability to match a ...Background Feature matching technology is vital to establish the association between virtual and real objects in virtual reality and augmented reality systems.Specifically,it provides them with the ability to match a dynamic scene.Many image matching methods,of which most are deep learning-based,have been proposed over the past few decades.However,vessel fracture,stenosis,artifacts,high background noise,and uneven vessel gray-scale make vessel matching in coronary angiography extremely difficult.Traditional matching methods perform poorly in this regard.Methods In this study,a topological distance-constrained feature descriptor learning model is proposed.This model regards the topology of the vasculature as the connection relationship of the centerline.The topological distance combines the geodesic distance between the input patches and constrains the descriptor network by maximizing the feature difference between connected and unconnected patches to obtain more useful potential feature relationships.Results Matching patches of different sequences of angiographic images are generated for the experiments.The matching accuracy and stability of the proposed method is superior to those of the existing models.Conclusions The proposed method solves the problem of matching coronary angiographies by generating a topological distance-constrained feature descriptor.展开更多
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o...On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.展开更多
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa...Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de...It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.展开更多
In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant featur...In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant feature transform (SIFT). First,the distance between SIFT features is included in the equations of the proximity matrix to measure the similarity between two feature points; then the normalized cross correlation (NCC) used in Scott s method,which has been modified with adaptive scale and orientation,...展开更多
To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object r...To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.展开更多
Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains...Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.展开更多
Dunhuang murals are gems of Chinese traditional art. This paper demonstrates a simple, yet powerful method to automatically identify the aesthetic visual style that lies in Dunhuang murals. Based on the art knowledge ...Dunhuang murals are gems of Chinese traditional art. This paper demonstrates a simple, yet powerful method to automatically identify the aesthetic visual style that lies in Dunhuang murals. Based on the art knowledge on Dunhuang murals, the method explicitly predicts some of possible image attributes that a human might use to understand the aesthetic visual style of a mural. These cues fall into three broad types: ① composition attributes related to mural layout or configuration; ② color attributes related to color types depicted; ③ brightness attributes related to bright conditions. We show that a classifier trained on these attributes can provide an efficient way to predict the aesthetic visual style of Dunhuang murals.展开更多
Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature des...Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.展开更多
Image registration is a critical process of many deep-sky image processing applications. Image registration methods include image stacking to reduce noise or achieve long exposure effects within a short exposure time,...Image registration is a critical process of many deep-sky image processing applications. Image registration methods include image stacking to reduce noise or achieve long exposure effects within a short exposure time, image stitching to extend the field of view, and atmospheric turbu- lence removal. The most widely used method for deep-sky image registration is the triangle- or polygon-based method, which is both memory and computation intensive. Deepsky image registration mainly focuses on translation and rotation caused by the vibration of imaging devices and the Earth's rotation, where rotation is the more difficult problem. For this problem, the best method is to find corresponding rotation-invariant features between different images. In this paper, we analyze the defects introduced by applying rotation-invariant feature descriptors to deep-sky image reg- istration and propose a novel descriptor. First, a dominant orientation is estimated from the geometrical relationships between a described star and two neighboring stable stars. An adaptive speeded-up robust features (SURF) descriptor is then constructed. During the construction of SURF, the local patch size adaptively changes based on the described star size. Finally, the proposed descriptor is formed by fusing star properties, geometrical relationships, and the adaptive SURF. Extensive experiments demonstrate that the proposed descriptor successfully addresses the gap resulting from applying the traditional feature-based method to deep-sky image registration and performs well compared to state-of-the-art descriptors.展开更多
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金support by China National Science Founda-tion No.61171145Shanghai Educational Research Foundation No.12ZZ083Shanghai University Graduate Students Innovation Foundation No.SHUCX120076.
文摘Depth map contains the space information of objects and is almost free from the influence of light,and it attracts many research interests in the field of machine vision used for human detection.Therefore,hunting a suitable image feature for human detection on depth map is rather attractive.In this paper,we evaluate the performance of the typical features on depth map.A depth map dataset containing various indoor scenes with human is constructed by using Microsoft’s Kinect camera as a quantitative benchmark for the study of methods of human detection on depth map.The depth map is smoothed with pixel filtering and context filtering so as to reduce particulate noise.Then,the performance of five image features and a new feature is studied and compared for human detection on the dataset through theoretic analysis and simulation experiments.Results show that the new feature outperforms other descriptors.
基金National Science Foundation of China(Nos.41801388,41901397)。
文摘The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of taking the contour geometric features into account,which may lead to mismatching in map boundaries and areas with intensive contours or extreme terrain changes.In light of this,it is put forward that a matching strategy from coarse to precious based on the contour geometric features.The proposed matching strategy can be described as follows.Firstly,the point sequence is converted to feature sequence according to a feature descriptive function based on curvature and angle of normal vector.Then the level of similarity among multi-source contours is calculated by using the longest common subsequence solution.Accordingly,the identical contours could be matched based on the above calculated results.In the experiment for the proposed method,the reliability and efficiency of the matching method are verified using simulative datasets and real datasets respectively.It has been proved that the proposed contour matching strategy has a high matching precision and good applicability.
基金the National Natural Science Foundation of China,No.51705469the Zhengzhou University Youth Talent Enterprise Cooperative Innovation Team Support Program Project(2021,2022).
文摘Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description consisting of a stable local reference frame(LRF)and a feature descriptor based on local spatial voxels.First,an improved LRF was designed by incorporating distance weights into Z-and X-axis calculations.Subsequently,based on the LRF and voxel segmentation,a feature descriptor based on voxel homogenization was proposed.Moreover,uniform segmentation of cube voxels was performed,considering the eigenvalues of each voxel and its neighboring voxels,thereby enhancing the stability of the description.The performance of the descriptor was strictly tested and evaluated on three public datasets,which exhibited high descriptiveness,robustness,and superior performance compared with other current methods.Furthermore,the descriptor was applied to a 3D registration trial,and the results demonstrated the reliability of our approach.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
基金the Key Technologies R&D Program of the National Ministry of Science(2018ZX10734-401)the National Science Foundation Program of China(61901031,62071048,62025104,61971040)Beijing Nova Program from Beijing Municipal Science&Technology Commission(Z201100006820004).
文摘Background Feature matching technology is vital to establish the association between virtual and real objects in virtual reality and augmented reality systems.Specifically,it provides them with the ability to match a dynamic scene.Many image matching methods,of which most are deep learning-based,have been proposed over the past few decades.However,vessel fracture,stenosis,artifacts,high background noise,and uneven vessel gray-scale make vessel matching in coronary angiography extremely difficult.Traditional matching methods perform poorly in this regard.Methods In this study,a topological distance-constrained feature descriptor learning model is proposed.This model regards the topology of the vasculature as the connection relationship of the centerline.The topological distance combines the geodesic distance between the input patches and constrains the descriptor network by maximizing the feature difference between connected and unconnected patches to obtain more useful potential feature relationships.Results Matching patches of different sequences of angiographic images are generated for the experiments.The matching accuracy and stability of the proposed method is superior to those of the existing models.Conclusions The proposed method solves the problem of matching coronary angiographies by generating a topological distance-constrained feature descriptor.
基金supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
文摘On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
基金This research was supported by National Natural Science Foundation of China(No.61271353,61871389)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09).
文摘Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
基金Projects(41001260,61173122,61573380) supported by the National Natural Science Foundation of ChinaProject(11JJ5044) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.
基金National High-tech Research and Development Program (2007AA01Z314)National Natural Science Foundation of China (60873085)
文摘In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant feature transform (SIFT). First,the distance between SIFT features is included in the equations of the proximity matrix to measure the similarity between two feature points; then the normalized cross correlation (NCC) used in Scott s method,which has been modified with adaptive scale and orientation,...
基金This work was supported by the National Natural Science Foundation of China(Nos.61271353 and 61871389)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02).
文摘To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.
基金supported by the National Natural Science Foundation of China,China(No.61801491)。
文摘Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.
基金the National Basic Research Program(973)of China(No.2012CB725305)the National Key Technology R&D Program of China(No.2012BAH03F02)
文摘Dunhuang murals are gems of Chinese traditional art. This paper demonstrates a simple, yet powerful method to automatically identify the aesthetic visual style that lies in Dunhuang murals. Based on the art knowledge on Dunhuang murals, the method explicitly predicts some of possible image attributes that a human might use to understand the aesthetic visual style of a mural. These cues fall into three broad types: ① composition attributes related to mural layout or configuration; ② color attributes related to color types depicted; ③ brightness attributes related to bright conditions. We show that a classifier trained on these attributes can provide an efficient way to predict the aesthetic visual style of Dunhuang murals.
基金supported by the National Natural Science Foundations of China(No.61802423)the Natural Science Foundation of Hunan Province,China(No.2019JJ50739)。
文摘Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.
文摘Image registration is a critical process of many deep-sky image processing applications. Image registration methods include image stacking to reduce noise or achieve long exposure effects within a short exposure time, image stitching to extend the field of view, and atmospheric turbu- lence removal. The most widely used method for deep-sky image registration is the triangle- or polygon-based method, which is both memory and computation intensive. Deepsky image registration mainly focuses on translation and rotation caused by the vibration of imaging devices and the Earth's rotation, where rotation is the more difficult problem. For this problem, the best method is to find corresponding rotation-invariant features between different images. In this paper, we analyze the defects introduced by applying rotation-invariant feature descriptors to deep-sky image reg- istration and propose a novel descriptor. First, a dominant orientation is estimated from the geometrical relationships between a described star and two neighboring stable stars. An adaptive speeded-up robust features (SURF) descriptor is then constructed. During the construction of SURF, the local patch size adaptively changes based on the described star size. Finally, the proposed descriptor is formed by fusing star properties, geometrical relationships, and the adaptive SURF. Extensive experiments demonstrate that the proposed descriptor successfully addresses the gap resulting from applying the traditional feature-based method to deep-sky image registration and performs well compared to state-of-the-art descriptors.