为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM...为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM)建立分类模型;最后采用KDD CUP 99数据集对PSO-IG的性能进行测试。测试结果表明:PSO-IG消除了冗余特征,降低了输入维数,提高了网络入侵检测速度;通过合理确定特征权值,提高了入侵检测正确率。展开更多
文摘为了提高网络入侵检测正确率,提出一种粒子群算法(PSO)选择特征和信息增益(IG)法确定特征权值的网络入侵检测模型(PSO-IG)。首先采用PSO选择网络入侵特征子集,消除冗余特征;然后采用IG法确定特征子集中的特征权重,并采用支持向量机(SVM)建立分类模型;最后采用KDD CUP 99数据集对PSO-IG的性能进行测试。测试结果表明:PSO-IG消除了冗余特征,降低了输入维数,提高了网络入侵检测速度;通过合理确定特征权值,提高了入侵检测正确率。