The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizat...The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizations for various banking services may result in various intrusions and privacy leakages.As a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global model.However,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of privacy.To address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global convergence.Resultantly improves the privacy of the local models.This analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)datasets.Precision,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and FedProx.The experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.展开更多
以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细...以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细的角度对各任务方向的最高气温及机动兵力数量进行定量预测;其次通过引接政府公共资源平台及作战数据库中多区域气温和机动兵力,在各数据客户端不互传数据的情况下,通过聚合不同客户端参数共同训练全局模型达到预测目的,为各数据源无法共享环境下分析数据、使用数据提供理论支撑。展开更多
作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集...作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集非IID造成的联邦学习性能损失。本文以平均信道增益预测、正交幅度调制信号的解调这两个无线任务以及两个图像分类任务为例,分析用户数据集非IID对联邦学习性能的影响,通过神经网络损失函数的可视化和对模型参数的偏移量进行分析,尝试解释非IID数据集对不同任务影响程度不同的原因。分析结果表明,用户数据集非IID未必导致联邦学习性能的下降。在不同数据集上通过联邦平均算法训练得到的模型参数偏移程度和损失函数形状有很大的差异,二者共同导致了不同任务受数据非IID影响程度的不同;在同一个回归问题中,数据集非IID是否影响联邦学习的性能与引起数据非IID的具体因素有关。展开更多
Federated learning(FedL)is a machine learning(ML)technique utilized to train deep neural networks(DeepNNs)in a distributed way without the need to share data among the federated training clients.FedL was proposed for ...Federated learning(FedL)is a machine learning(ML)technique utilized to train deep neural networks(DeepNNs)in a distributed way without the need to share data among the federated training clients.FedL was proposed for edge computing and Internet of things(IoT)tasks in which a centralized server was responsible for coordinating and governing the training process.To remove the design limitation implied by the centralized entity,this work proposes two different solutions to decentralize existing FedL algorithms,enabling the application of FedL on networks with arbitrary communication topologies,and thus extending the domain of application of FedL to more complex scenarios and new tasks.Of the two proposed algorithms,one,called FedLCon,is developed based on results from discrete-time weighted average consensus theory and is able to reconstruct the performances of the standard centralized FedL solutions,as also shown by the reported validation tests.展开更多
This study analyzes the demarcation method of riverine and accreted land of the Brazilian Federal Heritage Department and proposes the incorporation of the flow rate corresponding to the recurrence interval of two yea...This study analyzes the demarcation method of riverine and accreted land of the Brazilian Federal Heritage Department and proposes the incorporation of the flow rate corresponding to the recurrence interval of two years, as recommended by the State Environmental Institute of the state of Rio de Janeiro. The case study of the Rio de Janeiro section of the Paraiba do Sul River was investigated, and the results indicate that the Federal Heritage Department’s method does not consider the ongoing anthropization of the river, caused mainly by the construction and operation of hydroelectric plants. In addition, it was observed that the limnimetric scales of the studied gauging stations are influenced by constant changes in the riverbed and by riverbank occupation, making it difficult to estimate the ordinary flood level. The study concludes by suggesting the adoption of a flow rate with a recurrence interval of two years and the simulation of the runoff conditions for demarcation of the average ordinary flood line.展开更多
The gross domestic product of Russia,expressed in US dollars,indicates problems in the Russian economy associated with the decline in oil prices on the world energy market and the consequences of the sanctions of the ...The gross domestic product of Russia,expressed in US dollars,indicates problems in the Russian economy associated with the decline in oil prices on the world energy market and the consequences of the sanctions of the United States and the European Union against Russia.The crisis situation of the Russian economy has a negative impact on the income of the population of country,represented mainly by wages.However,an economist or investor may be optimistic about Russian economic development in the medium term.This optimism is related to the economic policy of the United States.The expansion of the United States economy within the global space,based on economic growth,requires maintaining inflation within the target level and weakening the US dollar.These tasks are solved with the help of soft monetary policy of the US Federal Reserve System.The reduction of interest rates by the US Federal Reserve System against the background of inflation of the target level and the devaluation of the US dollar will contribute to economic growth in the United States,because it will lead to the depreciation of public debt,lower consumption of imports,increase in exports and trade balance,growth of production,income,consumption.The economic policy of the United States,which contributes to the devaluation of the US dollar,will also reduce the US dollar against the ruble.The optimistic view of investors-economists on the Russian economy is due to a significant strengthening of the ruble against the US dollar.Consequently,in the medium term,the gross domestic product and wages of citizens of Russia,expressed in US dollars,will significantly increase,and the purchasing power of the national currency of the country will also increase.This growth may continue until the next election of a new President of the United States in november 2020.After the election of the new President of the United States,there is a high probability of sanctions against Russia and of decline in oil prices in the world energy market in accordance with the future economic policy of the United States–two main reasons for the sharp strengthening of the US dollar against the ruble,which will cause a deeper economic crisis in Russia in the medium and long term.展开更多
文摘The increasing data pool in finance sectors forces machine learning(ML)to step into new complications.Banking data has significant financial implications and is confidential.Combining users data from several organizations for various banking services may result in various intrusions and privacy leakages.As a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global model.However,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of privacy.To address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global convergence.Resultantly improves the privacy of the local models.This analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)datasets.Precision,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and FedProx.The experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.
文摘以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细的角度对各任务方向的最高气温及机动兵力数量进行定量预测;其次通过引接政府公共资源平台及作战数据库中多区域气温和机动兵力,在各数据客户端不互传数据的情况下,通过聚合不同客户端参数共同训练全局模型达到预测目的,为各数据源无法共享环境下分析数据、使用数据提供理论支撑。
文摘传统联邦学习训练模型时假定所有参与方可信,但实际场景存在恶意参与方或恶意攻击模型,现有的联邦学习算法面对投毒攻击时,存在模型性能严重下降的问题。针对模型投毒问题,本文提出一种基于联邦平均(federated averaging,Fedavg)与异常检测的联邦检测算法——FedavgCof,该算法考虑到所有参与方之间的差异对比,在中心服务器和本地模型之间添加异常检测层,通过基于聚类的本地异常检测因子(cluster-based local outlier factor,COF)异常检测算法剔除影响模型性能的异常参数,提升模型鲁棒性。实验结果表明,虽然新型投毒方式攻击性更强,但是FedavgCof能够有效防御投毒攻击,降低模型性能损失,提高模型抗投毒攻击能力,相较于Median和模型清洗算法平均提升精度达到10%以上,大幅提升了模型的安全性。
文摘作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集非IID造成的联邦学习性能损失。本文以平均信道增益预测、正交幅度调制信号的解调这两个无线任务以及两个图像分类任务为例,分析用户数据集非IID对联邦学习性能的影响,通过神经网络损失函数的可视化和对模型参数的偏移量进行分析,尝试解释非IID数据集对不同任务影响程度不同的原因。分析结果表明,用户数据集非IID未必导致联邦学习性能的下降。在不同数据集上通过联邦平均算法训练得到的模型参数偏移程度和损失函数形状有很大的差异,二者共同导致了不同任务受数据非IID影响程度的不同;在同一个回归问题中,数据集非IID是否影响联邦学习的性能与引起数据非IID的具体因素有关。
基金Supported by the Lazio region,in the scope of the project FedMedAI,Regional Operative Prgramme (POR) of the European fund for regional development (FESR) Lazio 2014–2020 (Azione 1.2.1)(No.A0375-2020-36491-23/10/2020)
文摘Federated learning(FedL)is a machine learning(ML)technique utilized to train deep neural networks(DeepNNs)in a distributed way without the need to share data among the federated training clients.FedL was proposed for edge computing and Internet of things(IoT)tasks in which a centralized server was responsible for coordinating and governing the training process.To remove the design limitation implied by the centralized entity,this work proposes two different solutions to decentralize existing FedL algorithms,enabling the application of FedL on networks with arbitrary communication topologies,and thus extending the domain of application of FedL to more complex scenarios and new tasks.Of the two proposed algorithms,one,called FedLCon,is developed based on results from discrete-time weighted average consensus theory and is able to reconstruct the performances of the standard centralized FedL solutions,as also shown by the reported validation tests.
文摘This study analyzes the demarcation method of riverine and accreted land of the Brazilian Federal Heritage Department and proposes the incorporation of the flow rate corresponding to the recurrence interval of two years, as recommended by the State Environmental Institute of the state of Rio de Janeiro. The case study of the Rio de Janeiro section of the Paraiba do Sul River was investigated, and the results indicate that the Federal Heritage Department’s method does not consider the ongoing anthropization of the river, caused mainly by the construction and operation of hydroelectric plants. In addition, it was observed that the limnimetric scales of the studied gauging stations are influenced by constant changes in the riverbed and by riverbank occupation, making it difficult to estimate the ordinary flood level. The study concludes by suggesting the adoption of a flow rate with a recurrence interval of two years and the simulation of the runoff conditions for demarcation of the average ordinary flood line.
文摘The gross domestic product of Russia,expressed in US dollars,indicates problems in the Russian economy associated with the decline in oil prices on the world energy market and the consequences of the sanctions of the United States and the European Union against Russia.The crisis situation of the Russian economy has a negative impact on the income of the population of country,represented mainly by wages.However,an economist or investor may be optimistic about Russian economic development in the medium term.This optimism is related to the economic policy of the United States.The expansion of the United States economy within the global space,based on economic growth,requires maintaining inflation within the target level and weakening the US dollar.These tasks are solved with the help of soft monetary policy of the US Federal Reserve System.The reduction of interest rates by the US Federal Reserve System against the background of inflation of the target level and the devaluation of the US dollar will contribute to economic growth in the United States,because it will lead to the depreciation of public debt,lower consumption of imports,increase in exports and trade balance,growth of production,income,consumption.The economic policy of the United States,which contributes to the devaluation of the US dollar,will also reduce the US dollar against the ruble.The optimistic view of investors-economists on the Russian economy is due to a significant strengthening of the ruble against the US dollar.Consequently,in the medium term,the gross domestic product and wages of citizens of Russia,expressed in US dollars,will significantly increase,and the purchasing power of the national currency of the country will also increase.This growth may continue until the next election of a new President of the United States in november 2020.After the election of the new President of the United States,there is a high probability of sanctions against Russia and of decline in oil prices in the world energy market in accordance with the future economic policy of the United States–two main reasons for the sharp strengthening of the US dollar against the ruble,which will cause a deeper economic crisis in Russia in the medium and long term.