Feed-forward gene transcriptional regulatory networks, as a set of common signal motifs, are widely distributed in the biological systems. In this paper, the noise characteristics and propagation mechanism of various ...Feed-forward gene transcriptional regulatory networks, as a set of common signal motifs, are widely distributed in the biological systems. In this paper, the noise characteristics and propagation mechanism of various feed-forward gene transcriptional regulatory loops are investigated, including (i) coherent feed-forward loops with AND-gate, (ii) coherent feed-forward loops with OR-gate logic, and (iii) incoherent feed-forward loops with AND-gate logic. By introducing logarithmic gain coefficient and using linear noise approximation, the theoretical formulas of noise decomposition are derived and the theoretical results are verified by Gillespie simulation. From the theoretical and numerical results of noise decomposition algorithm, three general characteristics about noise transmission in these different kinds of feed-forward loops are observed, i) The two-step noise propagation of upstream factor is negative in the incoherent feed-forward loops with AND-gate logic, that is, upstream factor can indirectly suppress the noise of downstream factors, ii) The one-step propagation noise of upstream factor is non-monotonic in the coherent feed-forward loops with OR-gate logic, iii) When the branch of the feed-forward loop is negatively controlled, the total noise of the downstream factor monotonically increases for each of all feed-forward loops. These findings are robust to variations of model parameters. These observations reveal the universal rules of noise propagation in the feed-forward loops, and may contribute to our understanding of design principle of gene circuits.展开更多
Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward ba...Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.展开更多
This paper aims to demonstrate the importance and possible value of housing predictive power which provides independent real estate market forecasts on home prices by using data mining tasks. A (FFBP) network model an...This paper aims to demonstrate the importance and possible value of housing predictive power which provides independent real estate market forecasts on home prices by using data mining tasks. A (FFBP) network model and (CFBP) network model are one of these tasks used in this research to compare results of them. We estimate the median value of owner occupied homes in Boston suburbs given 13 neighborhood attributes. An estimator can be found by fitting the inputs and targets. This data set has 506 samples. “ousing inputs” is a 13 × 506 matrix. The “housing targets” is a 1 × 506 matrix of median values of owner-occupied homes in $1000’s. The result in this paper concludes that which one of the two networks appears to be a better indicator of the output data to target data network structure than maximizing predict. The CFBP network which is the best result from the Output_network for all samples are found from the equation output = 0.95 * Target + 1.2. The regression value is approximately 1, (R = 0.964). That means the Output_network is matching to the target data set (Median value of owner-occupied homes in $1000’s), and the percent correctly predict in the simulation sample is 96%.展开更多
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ...Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant Nos.2662015QC041 and 2662014BQ069)the Huazhong Agricultural University Scientific&Technological Self-innovation Foundation,China(Grant No.2015RC021)the National Natural Science Foundation of China(Grant Nos.11675060,91730301,11547244,and 11474117)
文摘Feed-forward gene transcriptional regulatory networks, as a set of common signal motifs, are widely distributed in the biological systems. In this paper, the noise characteristics and propagation mechanism of various feed-forward gene transcriptional regulatory loops are investigated, including (i) coherent feed-forward loops with AND-gate, (ii) coherent feed-forward loops with OR-gate logic, and (iii) incoherent feed-forward loops with AND-gate logic. By introducing logarithmic gain coefficient and using linear noise approximation, the theoretical formulas of noise decomposition are derived and the theoretical results are verified by Gillespie simulation. From the theoretical and numerical results of noise decomposition algorithm, three general characteristics about noise transmission in these different kinds of feed-forward loops are observed, i) The two-step noise propagation of upstream factor is negative in the incoherent feed-forward loops with AND-gate logic, that is, upstream factor can indirectly suppress the noise of downstream factors, ii) The one-step propagation noise of upstream factor is non-monotonic in the coherent feed-forward loops with OR-gate logic, iii) When the branch of the feed-forward loop is negatively controlled, the total noise of the downstream factor monotonically increases for each of all feed-forward loops. These findings are robust to variations of model parameters. These observations reveal the universal rules of noise propagation in the feed-forward loops, and may contribute to our understanding of design principle of gene circuits.
文摘Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.
文摘This paper aims to demonstrate the importance and possible value of housing predictive power which provides independent real estate market forecasts on home prices by using data mining tasks. A (FFBP) network model and (CFBP) network model are one of these tasks used in this research to compare results of them. We estimate the median value of owner occupied homes in Boston suburbs given 13 neighborhood attributes. An estimator can be found by fitting the inputs and targets. This data set has 506 samples. “ousing inputs” is a 13 × 506 matrix. The “housing targets” is a 1 × 506 matrix of median values of owner-occupied homes in $1000’s. The result in this paper concludes that which one of the two networks appears to be a better indicator of the output data to target data network structure than maximizing predict. The CFBP network which is the best result from the Output_network for all samples are found from the equation output = 0.95 * Target + 1.2. The regression value is approximately 1, (R = 0.964). That means the Output_network is matching to the target data set (Median value of owner-occupied homes in $1000’s), and the percent correctly predict in the simulation sample is 96%.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.