针对电源车健康维护存在的问题,提出了一种基于长短时间记忆LSTM(Long Short Time Memory)网络与序贯概率比检验SPRT(Sequential Probability Ratio Test)融合的电源车故障诊断方法。该方法基于LSTM网络建立电源车的多变量时间序列模型...针对电源车健康维护存在的问题,提出了一种基于长短时间记忆LSTM(Long Short Time Memory)网络与序贯概率比检验SPRT(Sequential Probability Ratio Test)融合的电源车故障诊断方法。该方法基于LSTM网络建立电源车的多变量时间序列模型,并引入SPRT方法进行自适应多样本故障诊断。经在电源车仿真系统上进行对比实验,结果表明LSTM诊断模型有更强的学习和映射能力,LSTM-SPRT融合的故障诊断方法,显著提高了电源车故障诊断的准确率和可靠性。展开更多
针对热力系统参数运行数据预测困难、准确率低的问题,基于灰狼算法(Grey Wolf Optimizer,GWO)、变分模态分解(Variational Mode Decomposition,VMD)、长短期记忆模型(Long Short Term Memory,LSTM)提出一种单参数时序预测方法。首先,使...针对热力系统参数运行数据预测困难、准确率低的问题,基于灰狼算法(Grey Wolf Optimizer,GWO)、变分模态分解(Variational Mode Decomposition,VMD)、长短期记忆模型(Long Short Term Memory,LSTM)提出一种单参数时序预测方法。首先,使用改进适应度函数的GWO对VMD的分解层数和惩罚系数进行寻优;其次,以最优参数对运行数据进行VMD,并将筛选出的本征模态函数(intrinsic mode function,IMF)分量作为原始数据趋势项;最后,以此运行参数趋势项作为LSTM的训练集输入特征向量,构建LSTM,LSTM超参数由北方苍鹰算法(Northern Goshawk Optimization,NGO)得到。经实际案例验证,该方法可以通过降低原始数据的噪声和扰动对LSTM的影响,增加LSTM对热力参数运行趋势的可预测时间长度和预测精度,相较于传统的LSTM,所提方法的有效预测时间长度增加约176%、预测精度提高约158%。展开更多
文摘针对电源车健康维护存在的问题,提出了一种基于长短时间记忆LSTM(Long Short Time Memory)网络与序贯概率比检验SPRT(Sequential Probability Ratio Test)融合的电源车故障诊断方法。该方法基于LSTM网络建立电源车的多变量时间序列模型,并引入SPRT方法进行自适应多样本故障诊断。经在电源车仿真系统上进行对比实验,结果表明LSTM诊断模型有更强的学习和映射能力,LSTM-SPRT融合的故障诊断方法,显著提高了电源车故障诊断的准确率和可靠性。
文摘针对热力系统参数运行数据预测困难、准确率低的问题,基于灰狼算法(Grey Wolf Optimizer,GWO)、变分模态分解(Variational Mode Decomposition,VMD)、长短期记忆模型(Long Short Term Memory,LSTM)提出一种单参数时序预测方法。首先,使用改进适应度函数的GWO对VMD的分解层数和惩罚系数进行寻优;其次,以最优参数对运行数据进行VMD,并将筛选出的本征模态函数(intrinsic mode function,IMF)分量作为原始数据趋势项;最后,以此运行参数趋势项作为LSTM的训练集输入特征向量,构建LSTM,LSTM超参数由北方苍鹰算法(Northern Goshawk Optimization,NGO)得到。经实际案例验证,该方法可以通过降低原始数据的噪声和扰动对LSTM的影响,增加LSTM对热力参数运行趋势的可预测时间长度和预测精度,相较于传统的LSTM,所提方法的有效预测时间长度增加约176%、预测精度提高约158%。