A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The prop...A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.展开更多
In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi...Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—c...There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.展开更多
Through analysis on the background to develop eco-tourism and necessity for ecological compensation,based on specific condition of Hukou County,in line with the situation to develop eco-tourism during ecological water...Through analysis on the background to develop eco-tourism and necessity for ecological compensation,based on specific condition of Hukou County,in line with the situation to develop eco-tourism during ecological water control project of Poyang Lake,residents' interest protection system and ecological benefit safeguard system for eco-tourism compensation were put forward.展开更多
A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range o...A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.展开更多
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v...Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.展开更多
In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve?...A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve? controlled hydraulic motor servo system with PID control and that with friction compensation control. Experimental results show that the gross steady errors are caused by frictions when the system is controlled by the conventional proportional control algorithm. Although the errors can be reduced by introducing the integral control, the limit cycle oscillation and the long setting time are caused. The positioning error for a constant load torque can be eliminated by using fixed friction compensation, but poor positioning accuracy is caused by the same fixed friction compensation when the load torques varies greatly. The dynamic friction compensation based on the error and change in error measurements can significantly improve the position precision in a broad range of the changes of load torque.展开更多
The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n tim...The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.展开更多
In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite...In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.展开更多
Research works on width compensation and correction were carried out in order to eliminate the effects of the PVPC ( plan view pattern control) on width accuracy of plate mill. The thickness correction calculation f...Research works on width compensation and correction were carried out in order to eliminate the effects of the PVPC ( plan view pattern control) on width accuracy of plate mill. The thickness correction calculation formula was derived for compensation the width deviation caused by PVPC function, and the formula is unified under the thinning and thickening conditions. In order to improve the width calculation accuracy, width spread calculation process was modified with dividing one large reduction pass to several small reduction calculation steps. The thickness wedge was simplified to rectangle based on the volume constant principle, and the width spread model for PVPC was constructed. The width compensation and correction for the PVPC functions are used for the online control process, and the Product dimension accuracy is improved. With the decrease of Crop losses, the Droduct yield was increased with 0. 2%.展开更多
Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive...Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.展开更多
The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical m...The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.展开更多
Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control m...Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
In order to overcome the shortcomings of the traditional sling suspension method,such as complex structure of suspension truss,large running resistance,and low precision of position servo system,a gravity compensation...In order to overcome the shortcomings of the traditional sling suspension method,such as complex structure of suspension truss,large running resistance,and low precision of position servo system,a gravity compensation method of lunar rover based on the combination of active suspension and active position following of magnetic levitation is proposed,and the overall design is carried out.The dynamic model of the suspension module of microgravity compensation system was established,and the decoupling control between the constant force component and the position servo component was analyzed and verified.The constant tension control was achieved by using hybrid force/position control.The position following control was realized by using fuzzy adaptive PID(proportional⁃integral⁃differential)control.The stable suspension control was realized based on the principle of force balance.The simulation results show that the compensation accuracy of constant tension could reach more than 95%,the position deviation was less than 5 mm,the position deviation angle was less than 0.025°,and the air gap recovered stability within 0.1 s.The gravity compensation system has excellent dynamic performance and can meet the requirements of microgravity simulation experiment of lunar rover.展开更多
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc...In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.展开更多
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc...With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.展开更多
文摘A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition.
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
基金Supported by National Excellent Natural Science Foundation of China(Grant No.52122503)Hebei Provincial Natural Science Foundation of China(Grant No.E2022203002)+2 种基金The Yanzhao’s Young Scientist Project of China(Grant No.E2023203258)Science Research Project of Hebei Education Department of China(Grant No.BJK2022060)Hebei Provincial Graduate Innovation Funding Project of China(Grant No.CXZZSS2022129).
文摘Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
基金supported by National Natural Science Foundation of China(Grant No.50437010)National Hi-tech Research and Development Program of China(863Program,Grant No.2006AA05Z205)Project of Six Talented Peak of Jiangsu Province,China(Grant No.07-D-013)
文摘There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.
基金Supported by Key Bid Program of Poyang Lake Ecological Economy Research Center of Jiangxi Province(09KJ01)~~
文摘Through analysis on the background to develop eco-tourism and necessity for ecological compensation,based on specific condition of Hukou County,in line with the situation to develop eco-tourism during ecological water control project of Poyang Lake,residents' interest protection system and ecological benefit safeguard system for eco-tourism compensation were put forward.
文摘A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.
文摘Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
文摘A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve? controlled hydraulic motor servo system with PID control and that with friction compensation control. Experimental results show that the gross steady errors are caused by frictions when the system is controlled by the conventional proportional control algorithm. Although the errors can be reduced by introducing the integral control, the limit cycle oscillation and the long setting time are caused. The positioning error for a constant load torque can be eliminated by using fixed friction compensation, but poor positioning accuracy is caused by the same fixed friction compensation when the load torques varies greatly. The dynamic friction compensation based on the error and change in error measurements can significantly improve the position precision in a broad range of the changes of load torque.
文摘The optimal instantaneous high order single step algorithm for active control is first discussed and then, the n+1 time step controlling force vector of the instantaneous optimal algorithm is derived from way of n time state vector. An estimating algorithm, is developed from this to solve the problem of active control with time delay compensation. The estimating algorithm based on this high order single step β method (HSM) foundation, is proven by simulation and experiment analysis, to be a valid solution to problem of active control with time delay compensation.
基金Supported by Hebei Provincial Natural Science Foundation of in China(Grant Nos.E2015203244,E2016203266)Program for the Youth Top-notch Talents of Hebei Province
文摘In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.N120407007)
文摘Research works on width compensation and correction were carried out in order to eliminate the effects of the PVPC ( plan view pattern control) on width accuracy of plate mill. The thickness correction calculation formula was derived for compensation the width deviation caused by PVPC function, and the formula is unified under the thinning and thickening conditions. In order to improve the width calculation accuracy, width spread calculation process was modified with dividing one large reduction pass to several small reduction calculation steps. The thickness wedge was simplified to rectangle based on the volume constant principle, and the width spread model for PVPC was constructed. The width compensation and correction for the PVPC functions are used for the online control process, and the Product dimension accuracy is improved. With the decrease of Crop losses, the Droduct yield was increased with 0. 2%.
基金Supported by National Natural Science Foundation of China(Grant No.51975481)Fundamental Research Funds for the Central Universities of China(Grant No.D5000220061).
文摘Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.
基金Project(2006CB705400)supported by the National Basic Research Program of China
文摘The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.
基金National Natural Science Foundation of China(Grant Nos.51675151,U1564201)Open Fund of the Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education(Grant No.GDSC202013).
文摘Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金the National Natural Science Foundation of China(Grant Nos.51305384 and 52075466)。
文摘In order to overcome the shortcomings of the traditional sling suspension method,such as complex structure of suspension truss,large running resistance,and low precision of position servo system,a gravity compensation method of lunar rover based on the combination of active suspension and active position following of magnetic levitation is proposed,and the overall design is carried out.The dynamic model of the suspension module of microgravity compensation system was established,and the decoupling control between the constant force component and the position servo component was analyzed and verified.The constant tension control was achieved by using hybrid force/position control.The position following control was realized by using fuzzy adaptive PID(proportional⁃integral⁃differential)control.The stable suspension control was realized based on the principle of force balance.The simulation results show that the compensation accuracy of constant tension could reach more than 95%,the position deviation was less than 5 mm,the position deviation angle was less than 0.025°,and the air gap recovered stability within 0.1 s.The gravity compensation system has excellent dynamic performance and can meet the requirements of microgravity simulation experiment of lunar rover.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA110903)Jilin Key Scientific and Technological Project(20170204085GX)Jilin Industrial Technology Innovation Strategic Alliance Program(20150309013GX)
文摘In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.
基金This work was supported in part by the National Nature Science Foundation of China(51922059)in part by the Beijing Natural Science Foundation(JQ19010)in part by the China Postdoctoral Science Foundation(2021T140371).
文摘With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.