Cellular Neural Networks (CNN) with feedback mode and M×N cells are equivalent to a network which possesses 2M×N cells, a neighborhood with mirror-like structure, space-variant templates and without feedback...Cellular Neural Networks (CNN) with feedback mode and M×N cells are equivalent to a network which possesses 2M×N cells, a neighborhood with mirror-like structure, space-variant templates and without feedback as well as without input templates. The stability of the CNN with feedback mode and transformations with the neighborhood of mirror-like structure are discussed.展开更多
This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from un...This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.展开更多
The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length t...The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.展开更多
The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the las...The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.展开更多
An output feedback sliding mode controller is designed for the stabilization of fractional order hyperchaotic systems including uncertainties in the state matrix and the output matrix. On the basis of auxiliary system...An output feedback sliding mode controller is designed for the stabilization of fractional order hyperchaotic systems including uncertainties in the state matrix and the output matrix. On the basis of auxiliary system,a sliding mode control law with output feedback characteristics is researched by studying the structure decomposition of fractional order hyperchaotic systems. Based on fractional order Lyapunov stability theorem,a switching surface is designed by using linear matrix inequality( LMI) method. Using a simple adaptation,an improved sliding mode controller is given to guarantee the existence of the sliding mode. Moreover,numerical simulations are performed to confirm the effectiveness and feasibility of the stabilization control scheme.展开更多
This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for di...This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.展开更多
One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltag...One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.展开更多
The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced ...The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.展开更多
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st...A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to...The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.展开更多
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p...A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).展开更多
This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial lin...This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.展开更多
This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicat...This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicate the laser’s single longitudinal mode(SLM) performance. In threshold analysis, the optimization process based on transfer matrix method is demonstrated to maximize △αL?and minimize F simultaneously. In the above-threshold regime, the evolutions of △αL?and?longitudinal distribution of photon density with injection current are evaluated. More importantly, nanoimprint lithography which was proved an efficient way to fabricate DFB gratings can provide completely same simple fabrication procedure for both 3CPM grating and conventional uniform grating. So the big practical value of 3CPM-DFB can be expected because of its advanced performance and easy manufacturability.展开更多
A series elastic actuator(SEA) is a powerful device in the area of human-machine integration, but it still suffers from difficult position control issues. Therefore, in this paper,an efficient approach is proposed to ...A series elastic actuator(SEA) is a powerful device in the area of human-machine integration, but it still suffers from difficult position control issues. Therefore, in this paper,an efficient approach is proposed to solve this problem. The approach design is divided into two steps: feedback linearization(FL) and global sliding mode(GSM) controller design. The bounded analysis is presented and global asymptotic convergence is analytically proven. Simulation and experiment results illustrate the effectiveness of the proposed scheme.展开更多
Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes ar...Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback, And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back, The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.展开更多
This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) bas...This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) based sliding mode controller design theory is proposed. And then a sufficient condition is obtained in terms of linear matrix inequalities(LMIs), which guarantees the resulted sliding mode dynamics to be FTB wrt some predefined scalars. Thereafter, a FTB-based sliding mode control(SMC) law is synthesized to ensure the state of the controlled system is driven into a novel desired switching surface s(t) = c(c is a constant) in a finite time. Simulation results illustrate the validity of the proposed FTB-based SMC design theory.展开更多
This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance....This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance. The satisfying simulation results on Simulink/Matlab environment for a 1.6 kW PMSM demonstrate the good performance and stability of the proposed ESMO algorithm against parameter variation, modeling uncertainty, measurement and system noises.展开更多
文摘Cellular Neural Networks (CNN) with feedback mode and M×N cells are equivalent to a network which possesses 2M×N cells, a neighborhood with mirror-like structure, space-variant templates and without feedback as well as without input templates. The stability of the CNN with feedback mode and transformations with the neighborhood of mirror-like structure are discussed.
基金supported by National Basic Research Program of China (973 Program) (No. 6138101004-3)Key Project of Innovation Knowledge of Chinese Academy of Sciences (No. YYYJ-0917)Innovation Knowledge of Chinese Academy of Sciences (No.O7A6210601)
文摘This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.
基金Project supported by the National Natural Science Foundation of China (Grant No 60438010).
文摘The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.
文摘The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61174037)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.61021002)the National Basic Research Program of China(Grant No.2012CB821205)
文摘An output feedback sliding mode controller is designed for the stabilization of fractional order hyperchaotic systems including uncertainties in the state matrix and the output matrix. On the basis of auxiliary system,a sliding mode control law with output feedback characteristics is researched by studying the structure decomposition of fractional order hyperchaotic systems. Based on fractional order Lyapunov stability theorem,a switching surface is designed by using linear matrix inequality( LMI) method. Using a simple adaptation,an improved sliding mode controller is given to guarantee the existence of the sliding mode. Moreover,numerical simulations are performed to confirm the effectiveness and feasibility of the stabilization control scheme.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60438010).
文摘This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.
文摘One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.
文摘The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.
基金supported by the National Natural Science Foundation of China(11502288)the Natural Science Foundation of Hunan Province(2016JJ3019)+1 种基金the Aeronautical Science Foundation of China(2017ZA88001)the Scientific Research Project of National University of Defense Technology(ZK17-03-32)
文摘A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
文摘The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.
基金supported by the National Natural Science Foundation of China(11502288)
文摘A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).
基金supported by the National Natural Science Foundation of China (Grant No 60437010)
文摘This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.
文摘This paper presents an optimized asymmetric three corrugation-pitch-modulated DFB laser (3CPM-DFB) with extremely high mode selectivity(△αL= 0.97) and low flatness(F = 0.009), which are two key parameters to indicate the laser’s single longitudinal mode(SLM) performance. In threshold analysis, the optimization process based on transfer matrix method is demonstrated to maximize △αL?and minimize F simultaneously. In the above-threshold regime, the evolutions of △αL?and?longitudinal distribution of photon density with injection current are evaluated. More importantly, nanoimprint lithography which was proved an efficient way to fabricate DFB gratings can provide completely same simple fabrication procedure for both 3CPM grating and conventional uniform grating. So the big practical value of 3CPM-DFB can be expected because of its advanced performance and easy manufacturability.
基金supported in part by the National Natural Science Foundation of China(61573198)
文摘A series elastic actuator(SEA) is a powerful device in the area of human-machine integration, but it still suffers from difficult position control issues. Therefore, in this paper,an efficient approach is proposed to solve this problem. The approach design is divided into two steps: feedback linearization(FL) and global sliding mode(GSM) controller design. The bounded analysis is presented and global asymptotic convergence is analytically proven. Simulation and experiment results illustrate the effectiveness of the proposed scheme.
基金Project supported by the Major Program of National Natural Science Foundation of China (Grant No 60438010).
文摘Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback, And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back, The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.
基金supported in part by the National Natural Science Foundation of China(61673001,61203051)the Foundation for Distinguished Young Scholars of Anhui Province(1608085J05)the Key Support Program of University Outstanding Youth Talent of Anhui Province(gxydZD201701)
文摘This paper studies the sliding mode controller design problems for a class of nonlinear system. The nonlinear function is considered to satisfy conic-type constraint condition. A novel finite-time boundedness(FTB) based sliding mode controller design theory is proposed. And then a sufficient condition is obtained in terms of linear matrix inequalities(LMIs), which guarantees the resulted sliding mode dynamics to be FTB wrt some predefined scalars. Thereafter, a FTB-based sliding mode control(SMC) law is synthesized to ensure the state of the controlled system is driven into a novel desired switching surface s(t) = c(c is a constant) in a finite time. Simulation results illustrate the validity of the proposed FTB-based SMC design theory.
文摘This paper presents a robust sixth-order Discrete-time Extended Sliding Mode Observer (DESMO) for sensorless control of PMSM in order to estimate the currents, speed, rotor position, load torque and stator resistance. The satisfying simulation results on Simulink/Matlab environment for a 1.6 kW PMSM demonstrate the good performance and stability of the proposed ESMO algorithm against parameter variation, modeling uncertainty, measurement and system noises.