Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Rec...Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis.展开更多
To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability ...To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability (with the control resolution within ± 5 × 10^-4 angle-degrees), controlled by using filtered-feedback and fuzzy-preeminence technology is designed and structured. The system is based on the analysis of dynamic and static composed-force-moment and disturhance factors. Through computational simulation, laboratory experiments and field-demo, it is proved that the system operation is available, practical, and propitious for minifying drive-power. These system structures and control strategies can be widely used in the fields such as astronomy, space navigation, deep-sea operation, high altitude motion, and weightless experiment, where a floating body must be controlled or simulated.展开更多
Through employing permutation entropy and the self-correlation function, the time-delay signature (TDS) of a vertical-cavity surface-emitting laser (VCSEL) with variable-polarization filtered optical feedback (VP...Through employing permutation entropy and the self-correlation function, the time-delay signature (TDS) of a vertical-cavity surface-emitting laser (VCSEL) with variable-polarization filtered optical feedback (VPFOF) is evaluated theoretically. The work shows that the feedback rate η, polarizer angle Op, and filter bandwidth A have an obvious influence on the TDS. The evolution maps of the TDS in parameter space (η, A) and (ηθp) are simulated for searching the chaos with weak TDS. Furthermore, compared with a VCSEL with polarization-preserved filtered optical feedback and a VCSEL with variable-polarization mirror optical feedback, this VPFOF-VCSEL shows superiority in TDS suppression.展开更多
We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) syst...We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) systems.It is a hybrid method combining a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter(MIMO MIC DFE-EFF) and a differential algorithm.The proposed method,termed 'MIMO MIC DFE-EFF with a differential algorithm' for short,has a multiuser feedback structure.We describe the schemes of MIMO MIC DFE-EFF and MIMO MIC DFE-EFF with a differential algorithm,and compare their minimum mean square error(MMSE) performance and computational complexity.Simulation results show that a significant performance gain can be achieved by employing the MIMO MIC DFE-EFF detection algorithm in the context of a multiuser MIMO-OFDM system over frequency selective Rayleigh channel.MIMO MIC DFE-EFF with the differential algorithm improves both computational efficiency and BER performance in a multistage structure relative to conventional DFE-EFF,though there is a small reduction in system performance compared with MIMO MIC DFE-EFF without the differential algorithm.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.70571053,10405018 and 10747147)
文摘Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis.
文摘To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability (with the control resolution within ± 5 × 10^-4 angle-degrees), controlled by using filtered-feedback and fuzzy-preeminence technology is designed and structured. The system is based on the analysis of dynamic and static composed-force-moment and disturhance factors. Through computational simulation, laboratory experiments and field-demo, it is proved that the system operation is available, practical, and propitious for minifying drive-power. These system structures and control strategies can be widely used in the fields such as astronomy, space navigation, deep-sea operation, high altitude motion, and weightless experiment, where a floating body must be controlled or simulated.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178011,61275116,and 61475127)the Graduate Research and Innovation Project of Chongqing Municipality(Grant No.CYB14054)
文摘Through employing permutation entropy and the self-correlation function, the time-delay signature (TDS) of a vertical-cavity surface-emitting laser (VCSEL) with variable-polarization filtered optical feedback (VPFOF) is evaluated theoretically. The work shows that the feedback rate η, polarizer angle Op, and filter bandwidth A have an obvious influence on the TDS. The evolution maps of the TDS in parameter space (η, A) and (ηθp) are simulated for searching the chaos with weak TDS. Furthermore, compared with a VCSEL with polarization-preserved filtered optical feedback and a VCSEL with variable-polarization mirror optical feedback, this VPFOF-VCSEL shows superiority in TDS suppression.
基金supported by the National Science and Technology Pillar Program (Nos 2008BAH30B12 and 2008BAH30B09)the Important National Science and Technology Specific Projects (Nos 2008ZX 03003-004, 2009ZX03003-008, 2009ZX03003-009, and 2009ZX 03002-009)+1 种基金the National Natural Science Foundation of China (No 60802009)the National High-Tech R & D Program (863) of China (Nos 2008AA01Z204 and 2009AA01Z205)
文摘We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) systems.It is a hybrid method combining a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter(MIMO MIC DFE-EFF) and a differential algorithm.The proposed method,termed 'MIMO MIC DFE-EFF with a differential algorithm' for short,has a multiuser feedback structure.We describe the schemes of MIMO MIC DFE-EFF and MIMO MIC DFE-EFF with a differential algorithm,and compare their minimum mean square error(MMSE) performance and computational complexity.Simulation results show that a significant performance gain can be achieved by employing the MIMO MIC DFE-EFF detection algorithm in the context of a multiuser MIMO-OFDM system over frequency selective Rayleigh channel.MIMO MIC DFE-EFF with the differential algorithm improves both computational efficiency and BER performance in a multistage structure relative to conventional DFE-EFF,though there is a small reduction in system performance compared with MIMO MIC DFE-EFF without the differential algorithm.