期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Alterative wire-feed system based on arc voltage negative feedback
1
作者 傅强 薛松柏 《China Welding》 EI CAS 2012年第2期38-42,共5页
Waveform control method was commonly adopted to reduce the spatter of CO2 arc welding and improve the weld formation. It certainly would reduce the self-regulation ability of arc due to the adoption of segmented const... Waveform control method was commonly adopted to reduce the spatter of CO2 arc welding and improve the weld formation. It certainly would reduce the self-regulation ability of arc due to the adoption of segmented constant current control which especially led to arc" blowout with the abrupt change oat" arc" length or downward welding. Therefore alterative wire-feed system based on arc voltage negative feedback was put forward to improve the .stability of arc" length in this paper. Double closed-loop and double fuzzy P1 regulation were adopted in this system. Fuzzy control of induced voltage was adopted in the inner-loop which improved the stability and fast response of wire-feed system. Fuzz)" control of arc" voltage negative feedback was used in the outer-loop whose output .served as the input of negative feedback regulation of inner-loop induced voltage. This method could remain arc" length and weld penetration unchan, ged on the basils of reducing spatter and improving formation and it was proved by downward welding tests. 展开更多
关键词 are voltage negative feedback CO2 are welding waveform control aherative wire-feed system
下载PDF
Power Quality Assessment of Voltage Positive Feedback Based Islanding Detection Algorithm
2
作者 Reza Bakhshi-Jafarabadi Reza Ghazi Javad Sadeh 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第4期787-795,共9页
Islanding refers to a condition where distributed generators(DGs)inject power solely to the local load after electrical separation from power grid.Several islanding detection methods(IDMs)categorized into remote,activ... Islanding refers to a condition where distributed generators(DGs)inject power solely to the local load after electrical separation from power grid.Several islanding detection methods(IDMs)categorized into remote,active,and passive groups have been reported to detect this undesirable state.In active techniques,a disturbance is injected into the DG’s controller to drift a local yardstick out of the permissible range.Although this disturbance leads to more effective detections even in well-balanced island,it raises the total harmonic distortion(THD)of the output current under the normal operation conditions.This paper analyzes the power quality aspect of the modified sliding mode controller as a new active IDM for grid-connected photovoltaic system(GCPVS)with a string inverter.Its performance is compared with the voltage positive feedback(VPF)method,a well-known active IDM.This evaluation is carried out for a 1 k Wp GCPVS in MATLAB/Simulink platform by measuring the output current harmonics and THD as well as the efficiency under various penetration and disturbance levels.The output results demonstrate that since the proposed disturbance changes the amplitude of the output current,it does not generate harmonics/subharmonics.Thereby,it has a negligible adverse effect on power quality.It is finally concluded that the performance of the sliding mode-based IDM is reliable from the standpoints of islanding detection and power quality. 展开更多
关键词 Islanding detection method(IDM) power quality sliding mode controller total harmonic distortion(THD) voltage positive feedback(VPF)
原文传递
Investigation of mechanical and electrical characteristics of selfsensing pneumatic torsional actuators
3
作者 XIAO Wei HU DeAn +1 位作者 HU GuoLiang XIAO YiHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期130-142,共13页
Soft pneumatic actuators are one of the most promising actuation for soft robots,and great achievements have been obtained.But it remains challenging to endow sensing capabilities to pneumatic actuators,especially for... Soft pneumatic actuators are one of the most promising actuation for soft robots,and great achievements have been obtained.But it remains challenging to endow sensing capabilities to pneumatic actuators,especially for the sensing ability originating directly from the actuator architecture.Herein,a self-sensing pneumatic torsional actuator(SPTA)is designed based on the electromagnetic induction effect and magnetically responsive materials.The SPTA can generate feedback voltage and current with the deformation,in which the sensing function comes from its inherent structure.To investigate the mechanical and electrical characteristics,an experimental platform and a finite element model are established,respectively.We find that the torsion angle and output torque increase in nonlinear with the actuating pressure.The maximum torsion angle is 66.35°,which is 84.34%of that for the actuator fabricated by pure rubber.The maximum output torque(24.9 N mm)improves by 23.19%compared with the actuator made by pure rubber.As regards the electrical characteristics,the maximum feedback voltage and current are 2.90μV and 29.50 nA when the SPTA is actuated by a pressure of−40 kPa.We also demonstrate that the relationship between the torsion angle and the magnetic flux change is approximately linear.Finally,the number of turns of wires,magnetic powders contents,and magnetic direction on the feedback voltage and current are studied.Results show that the feedback voltage and current can be enhanced by increasing the number of turns and magnetic powders contents.We envision that the SPTA would be promising for soft robots to realize their accuracy control and intelligentization. 展开更多
关键词 pneumatic torsional actuators SELF-SENSING feedback voltage finite element modeling soft robots
原文传递
The Resonance Suppression for Parallel Photovoltaic Grid-connected Inverters in Weak Grid 被引量:6
4
作者 Qiu-Xia Yang Kun Li +1 位作者 Cui-Mei Zhao Hu Wang 《International Journal of Automation and computing》 EI CSCD 2018年第6期716-727,共12页
Obvious resonance peak will be generated when parallel photovoltaic grid-connected inverters are connected to the weak grid with high grid impedance, which seriously affects the stability of grid-connected operation o... Obvious resonance peak will be generated when parallel photovoltaic grid-connected inverters are connected to the weak grid with high grid impedance, which seriously affects the stability of grid-connected operation of the photovoltaic system. To overcome the problems mentioned above, the mathematical model of the parallel photovoltaic inverters is established. Several factors including the impact of the reference current of the grid-connected inverter, the grid voltage interference and the current disturbance between the photovoltaic inverters in parallel with the grid-connected inverters are analyzed. The grid impedance and the LCL filter of the photovoltaic inverter system are found to be the key elements which lead to existence of resonance peak. This paper presents the branch voltage and current double feedback suppression method under the premise of not changing the topological structure of the photovoltaic inverter, which effectively handles the resonance peak, weakens the harmonic content of the grid current of the photovoltaic grid-connected inverter and the voltage at the point of common coupling, and improves the stability of the parallel operation of the photovoltaic grid-connected inverters in weak grid. At last, the simulation model is established to verify the reliability of this suppression method. 展开更多
关键词 Parallel photovoltaic grid-connected inverters weak grid grid impedance resonance peak branch voltage and current double feedback.
原文传递
A low power CMOS VCO using inductive-biasing with high performance FoM
5
作者 刘伟豪 黄鲁 《Journal of Semiconductors》 EI CAS CSCD 2016年第4期100-105,共6页
A novel voltage-controlled oscillator(VCO) topology with low voltage and low power is presented. It employed the inductive-biasing to build a feedback path between the tank and the MOS gate to enhance the voltage ga... A novel voltage-controlled oscillator(VCO) topology with low voltage and low power is presented. It employed the inductive-biasing to build a feedback path between the tank and the MOS gate to enhance the voltage gain from output nodes of the tank to the gate node of the cross-coupled transistor. Theoretical analysis using timevarying phase noise theory derives closed-form symbolic formulas for the 1/f^2 phase noise region, showing that this feedback path could improve the phase noise performance. The proposed VCO is fabricated in TSMC 0.13 m CMOS technology. Working under a 0.3 V supply voltage with 1.2 m W power consumption, the measured phase noise of the VCO is –119.4 d Bc/Hz at 1 MHz offset frequency from the carrier of 4.92 GHz, resulting in an Fo M of 192.5 d Bc/Hz. 展开更多
关键词 low power inductive-biasing feedback path phase noise voltage controlled oscillators(VCO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部