AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament st...AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament stem cells(h PDLSCs) serving as feeder cells in co-culture systems for the cultivation of limbal stem cells.METHODS: Different feeder layers were cultured in Dulbecco's modified Eagle's medium(DMEM)/F12 and were treated with mitomycin C. Rabbits limbal stem cells(LSCs) were co-cultured on h UCMSCs, h UVECs, h DPSCs, h PDLSCs and NIH-3T3, and then comparative analysis were made between each group to see their respective colony-forming efficiency(CFE) assay and immunofluorescence(IPO13,CK3/12).RESULTS: The efficiency of the four type cells in supporting the LSCs morphology and its cellular differentiation was similar to that of NIH-3T3 fibroblasts as demonstrated by the immunostaining properties analysis, with each group exhibiting a similar strong expression pattern of IPO13, but lacking CK3 and CK12 expression in terms of immunostaining. But h UCMSCs, h DPSCs and h PDLSCs feeder layers were superior in promoting colony formation potential of cells when compared to h UVECs and feedercell-free culture.CONCLUSION: hUCMSCs, hDPSCs and hPDLSCs can be a suitable alternative to conventional mouse NIH-3T3 feeder cells, so that risk of zoonotic infection can be diminished.展开更多
Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at ...Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at present limited by xeno-contamination during the in vitro derivation and propagation of these cells. In this review, we summarize the current methodologies for the derivation and the propagation of hESC in conditions that will eventually enable the generation of clinical-grade cells for future therapeutic applications.展开更多
Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprograrnming. This technology provides a potential source of non-controversial therapeutic ceils for tissue repair, drug dis...Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprograrnming. This technology provides a potential source of non-controversial therapeutic ceils for tissue repair, drug discovery, and opportunities for studying the molecular basis of human disease. Normally, mouse embryonic fibroblasts (MEFs) are used as feeder layers in the initial derivation of iPS lines. The pur- pose of this study was to determine whether SNL fibrohlasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentiviral expressed reprogramming factors. In our study, iPS cells expressed common pluripotency markers, dis- played human embryonic stem cells (hESCs) morphology and unmethylated promoters of NANOG and OCT4. These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.展开更多
基金Supported by the Project Plan of Science and Technology Assistance in Xinjiang Autonomous Region(No.201491171)
文摘AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament stem cells(h PDLSCs) serving as feeder cells in co-culture systems for the cultivation of limbal stem cells.METHODS: Different feeder layers were cultured in Dulbecco's modified Eagle's medium(DMEM)/F12 and were treated with mitomycin C. Rabbits limbal stem cells(LSCs) were co-cultured on h UCMSCs, h UVECs, h DPSCs, h PDLSCs and NIH-3T3, and then comparative analysis were made between each group to see their respective colony-forming efficiency(CFE) assay and immunofluorescence(IPO13,CK3/12).RESULTS: The efficiency of the four type cells in supporting the LSCs morphology and its cellular differentiation was similar to that of NIH-3T3 fibroblasts as demonstrated by the immunostaining properties analysis, with each group exhibiting a similar strong expression pattern of IPO13, but lacking CK3 and CK12 expression in terms of immunostaining. But h UCMSCs, h DPSCs and h PDLSCs feeder layers were superior in promoting colony formation potential of cells when compared to h UVECs and feedercell-free culture.CONCLUSION: hUCMSCs, hDPSCs and hPDLSCs can be a suitable alternative to conventional mouse NIH-3T3 feeder cells, so that risk of zoonotic infection can be diminished.
文摘Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at present limited by xeno-contamination during the in vitro derivation and propagation of these cells. In this review, we summarize the current methodologies for the derivation and the propagation of hESC in conditions that will eventually enable the generation of clinical-grade cells for future therapeutic applications.
基金supported by the National Institute of Health,USA (No.R21 RR025408)
文摘Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprograrnming. This technology provides a potential source of non-controversial therapeutic ceils for tissue repair, drug discovery, and opportunities for studying the molecular basis of human disease. Normally, mouse embryonic fibroblasts (MEFs) are used as feeder layers in the initial derivation of iPS lines. The pur- pose of this study was to determine whether SNL fibrohlasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentiviral expressed reprogramming factors. In our study, iPS cells expressed common pluripotency markers, dis- played human embryonic stem cells (hESCs) morphology and unmethylated promoters of NANOG and OCT4. These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.