In this paper sufficient conditions for mean convergence and rate of convergence of Hermite-Fejer type interpolation in the Lp norm on an arbitrary system of nodes are presented.
The (Noerlund) logarithmic means of the Fourier series is:tnf=1/ln ^n-1∑k=1 Skf/n-k, where ln=^n-1∑k=1 1/k In general, the Fej6r (C, 1) means have better properties than the logarithmic ones. We compare them an...The (Noerlund) logarithmic means of the Fourier series is:tnf=1/ln ^n-1∑k=1 Skf/n-k, where ln=^n-1∑k=1 1/k In general, the Fej6r (C, 1) means have better properties than the logarithmic ones. We compare them and show that in the case of some unbounded Vilenkin systems the situation changes.展开更多
The main aim of this paper is to prove that the maximal operator σ# is not bounded from the martingale Hardy space Hp (G) to the martingale Hardy space Hp (G) for 0〈p≤1.
The main aim of this paper is to prove that for any 0 〈 p≤ 2/3 there exists a martingale f E Hp such that Marcinkiewicz Fejer means of the two-dimensional conjugate Walsh Fourier series of the martingale f is not un...The main aim of this paper is to prove that for any 0 〈 p≤ 2/3 there exists a martingale f E Hp such that Marcinkiewicz Fejer means of the two-dimensional conjugate Walsh Fourier series of the martingale f is not uniformly bounded in the space Lp.展开更多
For the two-dimensional Walsh system, Gat and Weisz proved the a.e. convergence of Fejer means σnf of integrable functions, where the set of indices is inside a positive cone around the identical function, that is, ...For the two-dimensional Walsh system, Gat and Weisz proved the a.e. convergence of Fejer means σnf of integrable functions, where the set of indices is inside a positive cone around the identical function, that is, β^-1≤n1/n2 ≤β is provided with some fixed parameter ~ 〉 1. In this paper we generalize the result of Gat and Weisz. We not only generalize this theorem, but give a necessary and sufficient condition for cone-like sets in order to preserve this convergence property.展开更多
The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(...The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(n+1)≥δsupk≤n aj(k)(j=1,...,d,n∈N)for someδ〉0 and a1(+∞)=···=ad(+∞)=+∞.Then,for each integrable function f∈L1(Id),we have the a.e.relation for the Cesaro means limn→∞σαa(n)f=f and for the Riesz means limn→∞σα,γa(n)f=f for any 0〈αj≤1≤γj(j=1,...,d).A straightforward consequence of our result is the so-called cone restricted a.e.convergence of the multidimensional Cesaro and Riesz means of integrable functions,which was proved earlier by Weisz.展开更多
基金Project 19671082 supported by National Natural Science Foundation of China, I acknowledge endless help from Prof. Shi Ying-Guang during finishing this paper.
文摘In this paper sufficient conditions for mean convergence and rate of convergence of Hermite-Fejer type interpolation in the Lp norm on an arbitrary system of nodes are presented.
基金The first author is supported by the Békésy Postdoctoral fellowship of the Hungarian Ministry of Education B91/2003the second author is supported by the Hungarian National Foundation for Scientific Research (OTKA),grant no. M 36511/2001, T 048780the Széchenyi fellowship of the Hungarian Ministry of Education Sz184/2003.
文摘The (Noerlund) logarithmic means of the Fourier series is:tnf=1/ln ^n-1∑k=1 Skf/n-k, where ln=^n-1∑k=1 1/k In general, the Fej6r (C, 1) means have better properties than the logarithmic ones. We compare them and show that in the case of some unbounded Vilenkin systems the situation changes.
文摘The main aim of this paper is to prove that the maximal operator σ# is not bounded from the martingale Hardy space Hp (G) to the martingale Hardy space Hp (G) for 0〈p≤1.
基金Supported by the National Natural Science Foundation of China(11201354)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Wuhan University of Science and Technology)(Y201321)the National Natural Science Foundation of Pre-Research Item(2011XG005)
文摘The main aim of this paper is to prove that for any 0 〈 p≤ 2/3 there exists a martingale f E Hp such that Marcinkiewicz Fejer means of the two-dimensional conjugate Walsh Fourier series of the martingale f is not uniformly bounded in the space Lp.
基金Supported by the Scientific Board of College of Nyiregyhaza
文摘For the two-dimensional Walsh system, Gat and Weisz proved the a.e. convergence of Fejer means σnf of integrable functions, where the set of indices is inside a positive cone around the identical function, that is, β^-1≤n1/n2 ≤β is provided with some fixed parameter ~ 〉 1. In this paper we generalize the result of Gat and Weisz. We not only generalize this theorem, but give a necessary and sufficient condition for cone-like sets in order to preserve this convergence property.
基金Supported by project TMOP-4.2.2.A-11/1/KONV-2012-0051
文摘The aim of this paper is to prove the a.e.convergence of sequences of the Cesaro and Riesz means of the Walsh–Fourier series of d variable integrable functions.That is,let a=(a1,...,ad):N→Nd(d∈P)such that aj(n+1)≥δsupk≤n aj(k)(j=1,...,d,n∈N)for someδ〉0 and a1(+∞)=···=ad(+∞)=+∞.Then,for each integrable function f∈L1(Id),we have the a.e.relation for the Cesaro means limn→∞σαa(n)f=f and for the Riesz means limn→∞σα,γa(n)f=f for any 0〈αj≤1≤γj(j=1,...,d).A straightforward consequence of our result is the so-called cone restricted a.e.convergence of the multidimensional Cesaro and Riesz means of integrable functions,which was proved earlier by Weisz.