A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and ...A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.展开更多
BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical p...BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical properties in European and American populations.However,whether the suitability of the FNS's 130°main nail angle design for Asian populations has been thoroughly investigated remains unclear.AIM To compare the biomechanical stability differences among different main nail angles of the FNS in the treatment of femoral neck fractures in Asian populations.METHODS Computed tomography data of the femur of healthy adult male volunteers were imported into Mimics software to create a three-dimensional model of the femur.The model was adapted to the curve using Geomagic software and imported into Solidworks software to construct the Pauwels I femoral neck fracture model and design the FNS internal fixation model using different main nail angles.Afterward,the models were assembled with the FNS fracture model and meshed using the preprocessing Hypermesh software.Subsequently,they were imported into Abaqus software to analyze and evaluate the biomechanical effects of different angles of the FNS main nail on the treatment of femoral neck fractures.RESULTS The peak displacement of the proximal femur under different angles of FNS fixation under stress was 7.446 millimeters in the 120°group and 7.416 millimeters in the 125°group;in the 130°,135°,and 140°FNS fixation groups,the peak displacement was 7.324 millimeters,8.138 millimeters,and 8.246 millimeters,respectively.In the 120°and 125°FNS fixation groups,the maximum stresses were concentrated at the main nail and the anti-rotation screw,which intersected the fracture line of the femur neck,resulting in peak stresses of 200.7 MPa and 138.8 MPa,respectively.Peak stresses of 208.8 MPa,219.8 MPa,and 239.3 MPa were observed on the angular locking plate distal to the locking screw in the 130°,135°,and 140°fixation groups.CONCLUSION FNS has significant stress distribution properties,a minimal proximal femoral displacement,and an optimal stability for treating femoral neck fractures in Asian populations when performed with a 130°main nail angle.展开更多
The number and spatial configuration of the screws will affect the stability and prognosis of the fractures.In our study,we assessed the biomechanical effects of the double-head cannulated compression screw(DhCCS)and ...The number and spatial configuration of the screws will affect the stability and prognosis of the fractures.In our study,we assessed the biomechanical effects of the double-head cannulated compression screw(DhCCS)and ordinary cannulated compression screw(OCCS)for the treatment of femoral neck fractures by using computer finite element analysis.The original digital imaging and communications in medicine(DICOM)data of a proximal femur were imported into Materialise’s interactive medical image control system(MIMICS)software for modeling.Both DhCCS and OCCS 3D-models were obtained by using the 3D scan technique.Using the fracture model and internal fixation assembly model with an inverted triangle,two horizontal and vertical distribution were established in UG software.Next,the displacement and stress distribution were calculated in ANSYS software.The displacement value of the femoral head in the DhCCS group was smaller than that in the OCCS group,and the displacement value in the two horizontal groups was smaller than that in the vertical group.The stress distribution in the DhCCS group was concentrated on the screw rod at the fracture block and thread end,while only at the fracture block in the OCCS group.The stress in the horizontal group was more dispersed on the screws than that in the vertical group.DhCCS has reliable stability for the fixation of femoral neck fractures and applied in the clinical work and 2 horizontal fixation can be used when two screws are selected.展开更多
Introduction: The indications for intramedullary nail fixation of fractures of the femoral shaft have been greatly expanded by techniques of interlocking nailing. However, distal locking screw fixation remains the mos...Introduction: The indications for intramedullary nail fixation of fractures of the femoral shaft have been greatly expanded by techniques of interlocking nailing. However, distal locking screw fixation remains the most technically demanding and problematic portion of the procedure and maybe responsible for as much as one-half of the exposure of the surgeon’s hands to radiation during the procedure. Objective: This biomechanical study was undertaken to compare the stability of using one distal locking cross screw versus two cross screws in femoral fractures fixed with intramedullary nailing (IMN) system. Materials: A composite model made from a stainless steel IMN (12 mm × 1 mm) was connected to a load cell (Instron machine). Axial forces upto 2 kN (3 times body weight) was applied or until a maximum displacement of 1 mm was reached. The distal locking end of the intramedullary nail was secured with stainless steel cylinders of different dimensions 50 mm × 5 mm, 75 mm × 5 mm and 100 mm × 3 mm to represent the proximal femoral diaphysis, diaphyseo-metaphyseal junction and distal femoral metaphyseal respectively. The distal locking end of the intramedullary nail was attached to the cylinder with a dedicated single or two rods (5 mm diameter), made from stainless steel, to represent the distal locking cross screw. Results: In the 50 mm cylinder, the mean stiffness (±standard deviation) of the system using either single or two screws were similar i.e. 3298 ± 144 N/mm. But in the 75 mm and 100 mm cylinders, the mean stiffness of the fracture model with two distal locking cross screws fixation was 2.059 ± 96 N/mm and 0.816 ± 122 N/mm and with single distal locking cross screw fixation were 0.643 ± 142 N/mm and 0.289 ± 88 N/mm respectively. Conclusion: Single distal locking cross screw fixation provide poorer fracture stability compared to two distal locking cross screws when used to fix distal femoral metaphyseal fractures.展开更多
文摘A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.
基金Supported by Tianjin Science and Technology planning Project,No.21JCQNJC01060Key Project of Tianjin Natural Science Foundation,No.22JCZDJC00340National Key Research and Development Project of China,No.2022YFC3601904.
文摘BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical properties in European and American populations.However,whether the suitability of the FNS's 130°main nail angle design for Asian populations has been thoroughly investigated remains unclear.AIM To compare the biomechanical stability differences among different main nail angles of the FNS in the treatment of femoral neck fractures in Asian populations.METHODS Computed tomography data of the femur of healthy adult male volunteers were imported into Mimics software to create a three-dimensional model of the femur.The model was adapted to the curve using Geomagic software and imported into Solidworks software to construct the Pauwels I femoral neck fracture model and design the FNS internal fixation model using different main nail angles.Afterward,the models were assembled with the FNS fracture model and meshed using the preprocessing Hypermesh software.Subsequently,they were imported into Abaqus software to analyze and evaluate the biomechanical effects of different angles of the FNS main nail on the treatment of femoral neck fractures.RESULTS The peak displacement of the proximal femur under different angles of FNS fixation under stress was 7.446 millimeters in the 120°group and 7.416 millimeters in the 125°group;in the 130°,135°,and 140°FNS fixation groups,the peak displacement was 7.324 millimeters,8.138 millimeters,and 8.246 millimeters,respectively.In the 120°and 125°FNS fixation groups,the maximum stresses were concentrated at the main nail and the anti-rotation screw,which intersected the fracture line of the femur neck,resulting in peak stresses of 200.7 MPa and 138.8 MPa,respectively.Peak stresses of 208.8 MPa,219.8 MPa,and 239.3 MPa were observed on the angular locking plate distal to the locking screw in the 130°,135°,and 140°fixation groups.CONCLUSION FNS has significant stress distribution properties,a minimal proximal femoral displacement,and an optimal stability for treating femoral neck fractures in Asian populations when performed with a 130°main nail angle.
基金This research was supported by the health and family planning commission of chongqing under grant 2016MSXM162.
文摘The number and spatial configuration of the screws will affect the stability and prognosis of the fractures.In our study,we assessed the biomechanical effects of the double-head cannulated compression screw(DhCCS)and ordinary cannulated compression screw(OCCS)for the treatment of femoral neck fractures by using computer finite element analysis.The original digital imaging and communications in medicine(DICOM)data of a proximal femur were imported into Materialise’s interactive medical image control system(MIMICS)software for modeling.Both DhCCS and OCCS 3D-models were obtained by using the 3D scan technique.Using the fracture model and internal fixation assembly model with an inverted triangle,two horizontal and vertical distribution were established in UG software.Next,the displacement and stress distribution were calculated in ANSYS software.The displacement value of the femoral head in the DhCCS group was smaller than that in the OCCS group,and the displacement value in the two horizontal groups was smaller than that in the vertical group.The stress distribution in the DhCCS group was concentrated on the screw rod at the fracture block and thread end,while only at the fracture block in the OCCS group.The stress in the horizontal group was more dispersed on the screws than that in the vertical group.DhCCS has reliable stability for the fixation of femoral neck fractures and applied in the clinical work and 2 horizontal fixation can be used when two screws are selected.
文摘Introduction: The indications for intramedullary nail fixation of fractures of the femoral shaft have been greatly expanded by techniques of interlocking nailing. However, distal locking screw fixation remains the most technically demanding and problematic portion of the procedure and maybe responsible for as much as one-half of the exposure of the surgeon’s hands to radiation during the procedure. Objective: This biomechanical study was undertaken to compare the stability of using one distal locking cross screw versus two cross screws in femoral fractures fixed with intramedullary nailing (IMN) system. Materials: A composite model made from a stainless steel IMN (12 mm × 1 mm) was connected to a load cell (Instron machine). Axial forces upto 2 kN (3 times body weight) was applied or until a maximum displacement of 1 mm was reached. The distal locking end of the intramedullary nail was secured with stainless steel cylinders of different dimensions 50 mm × 5 mm, 75 mm × 5 mm and 100 mm × 3 mm to represent the proximal femoral diaphysis, diaphyseo-metaphyseal junction and distal femoral metaphyseal respectively. The distal locking end of the intramedullary nail was attached to the cylinder with a dedicated single or two rods (5 mm diameter), made from stainless steel, to represent the distal locking cross screw. Results: In the 50 mm cylinder, the mean stiffness (±standard deviation) of the system using either single or two screws were similar i.e. 3298 ± 144 N/mm. But in the 75 mm and 100 mm cylinders, the mean stiffness of the fracture model with two distal locking cross screws fixation was 2.059 ± 96 N/mm and 0.816 ± 122 N/mm and with single distal locking cross screw fixation were 0.643 ± 142 N/mm and 0.289 ± 88 N/mm respectively. Conclusion: Single distal locking cross screw fixation provide poorer fracture stability compared to two distal locking cross screws when used to fix distal femoral metaphyseal fractures.