This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led ...This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.展开更多
The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expan...The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.展开更多
Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly th...Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.展开更多
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duratio...The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.展开更多
基金supported by the National Basic Research Program of China (Grant No 2006CB806000)the National Natural Science Foundation of China (Grant No 10535070)
文摘This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10535070 and 10674145)the National Basic Research Program of China (Grant No 2006CB806000)the Shanghai Supercomputer Center (SSC)
文摘The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.
基金Projects supported by the National Natural Science Foundation of China (Grant Nos 10575046 and 10775062)
文摘Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10575046 and 10775062)
文摘The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.