The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes...This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.展开更多
A new method is developed to measure the wave surface elevation in a wave basin.A thin film of tiny granules floating on the free surface ensures the formation of the dot grid pattern on the wave surface.The dot grid ...A new method is developed to measure the wave surface elevation in a wave basin.A thin film of tiny granules floating on the free surface ensures the formation of the dot grid pattern on the wave surface.The dot grid pattern is generated by a high-brightness projector.The granule film has little influence on the wave propagation in a wave basin.The measuring system is validated by the experiments of the propagation of solitary wave in water of uniform depth.It turns out that the time series of the surface elevation measured by the multi-lens stereo reconstruction method agree well with that measured by wave gauges.The errors of the measuring system are discussed.This work sheds a light on measuring the local wave field with high precision and efficiency in laboratory.展开更多
Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in th...Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.展开更多
High-quality 3D reconstruction is an important topic in computer graphics and computer vision with many applications,such as robotics and augmented reality.The advent of consumer RGB-D cameras has made a profound adva...High-quality 3D reconstruction is an important topic in computer graphics and computer vision with many applications,such as robotics and augmented reality.The advent of consumer RGB-D cameras has made a profound advance in indoor scene reconstruction.For the past few years,researchers have spent significant effort to develop algorithms to capture 3D models with RGB-D cameras.As depth images produced by consumer RGB-D cameras are noisy and incomplete when surfaces are shiny,bright,transparent,or far from the camera,obtaining highquality 3D scene models is still a challenge for existing systems.We here review high-quality 3D indoor scene reconstruction methods using consumer RGB-D cameras.In this paper,we make comparisons and analyses from the following aspects:(i)depth processing methods in 3D reconstruction are reviewed in terms of enhancement and completion,(ii)ICP-based,feature-based,and hybrid methods of camera pose estimation methods are reviewed,and(iii)surface reconstruction methods are reviewed in terms of surface fusion,optimization,and completion.The performance of state-of-the-art methods is also compared and analyzed.This survey will be useful for researchers who want to follow best practices in designing new high-quality 3D reconstruction methods.展开更多
Quantization error and its source of the binocular stereo vision technique are evaluated by measuring breaking wave surface in wave flume.The verification test focuses on the run-up process of a breaking solitary wave...Quantization error and its source of the binocular stereo vision technique are evaluated by measuring breaking wave surface in wave flume.The verification test focuses on the run-up process of a breaking solitary wave on a slope.The three-dimensional topography of the free surface is reconstructed at three representative stages of wave propagation.The two-dimensional profile from the side view and statistical data are used to evaluate the quantization error.The breaking degree of wave surface has a mild influence on the performance of stereo reconstruction in the current configuration.The mean error of detecting the surface elevation is about 2 mm,around 0.1%of the measurement distance.Sixty percent of the error comes from the deficient match in image interrogation,and the remaining forty percent arises from the limited system configuration.The precise stereo measurement of the breaking surface shows that the present binocular vision system provides a new technique in experiments in hydrodynamics with the breaking surface.展开更多
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
基金National Natural Science Foundation of China (50275139) Natural Science Foundation of Zhejiang (01388-G)
文摘This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11632012,41861144024)the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GKZD010075).
文摘A new method is developed to measure the wave surface elevation in a wave basin.A thin film of tiny granules floating on the free surface ensures the formation of the dot grid pattern on the wave surface.The dot grid pattern is generated by a high-brightness projector.The granule film has little influence on the wave propagation in a wave basin.The measuring system is validated by the experiments of the propagation of solitary wave in water of uniform depth.It turns out that the time series of the surface elevation measured by the multi-lens stereo reconstruction method agree well with that measured by wave gauges.The errors of the measuring system are discussed.This work sheds a light on measuring the local wave field with high precision and efficiency in laboratory.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.51875472,91860206,and 51905440)the National Science and Technology Major Project(Grant No.2017-VII-0001-0094)+1 种基金the National Key Research and Development Plan in Shaanxi Province of China(Grant No.2019ZDLGY02-03)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-186).
文摘Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.
基金National Key R&D Program of China under Grant No.2018YFC2000600Open Projects Program of National Laboratory of Pattern Recognition under Grant No.202100009+1 种基金National Natural Science Foundation of China under Grant No.72071018Fundamental Research Funds for Central Universities under Grant No.2021TD006。
文摘High-quality 3D reconstruction is an important topic in computer graphics and computer vision with many applications,such as robotics and augmented reality.The advent of consumer RGB-D cameras has made a profound advance in indoor scene reconstruction.For the past few years,researchers have spent significant effort to develop algorithms to capture 3D models with RGB-D cameras.As depth images produced by consumer RGB-D cameras are noisy and incomplete when surfaces are shiny,bright,transparent,or far from the camera,obtaining highquality 3D scene models is still a challenge for existing systems.We here review high-quality 3D indoor scene reconstruction methods using consumer RGB-D cameras.In this paper,we make comparisons and analyses from the following aspects:(i)depth processing methods in 3D reconstruction are reviewed in terms of enhancement and completion,(ii)ICP-based,feature-based,and hybrid methods of camera pose estimation methods are reviewed,and(iii)surface reconstruction methods are reviewed in terms of surface fusion,optimization,and completion.The performance of state-of-the-art methods is also compared and analyzed.This survey will be useful for researchers who want to follow best practices in designing new high-quality 3D reconstruction methods.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.12102262,11632012).
文摘Quantization error and its source of the binocular stereo vision technique are evaluated by measuring breaking wave surface in wave flume.The verification test focuses on the run-up process of a breaking solitary wave on a slope.The three-dimensional topography of the free surface is reconstructed at three representative stages of wave propagation.The two-dimensional profile from the side view and statistical data are used to evaluate the quantization error.The breaking degree of wave surface has a mild influence on the performance of stereo reconstruction in the current configuration.The mean error of detecting the surface elevation is about 2 mm,around 0.1%of the measurement distance.Sixty percent of the error comes from the deficient match in image interrogation,and the remaining forty percent arises from the limited system configuration.The precise stereo measurement of the breaking surface shows that the present binocular vision system provides a new technique in experiments in hydrodynamics with the breaking surface.