期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Closed Strong Spacelike Curves, Fenchel Theorem and Plateau Problem in the 3-Dimensional Minkowski Space
1
作者 Nan YE Xiang MA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2019年第2期217-226,共10页
The authors generalize the Fenchel theorem for strong spacelike closed curves of index 1 in the 3-dimensional Minkowski space, showing that the total curvature must be less than or equal to 2π. Here the strong spacel... The authors generalize the Fenchel theorem for strong spacelike closed curves of index 1 in the 3-dimensional Minkowski space, showing that the total curvature must be less than or equal to 2π. Here the strong spacelike condition means that the tangent vector and the curvature vector span a spacelike 2-plane at each point of the curve γ under consideration. The assumption of index 1 is equivalent to saying that γ winds around some timelike axis with winding number 1. This reversed Fenchel-type inequality is proved by constructing a ruled spacelike surface with the given curve as boundary and applying the Gauss-Bonnet formula. As a by-product, this shows the existence of a maximal surface with γ as the boundary. 展开更多
关键词 fenchel theorem Spacelike CURVES Total CURVATURE MAXIMAL surface
原文传递
Fenchel对偶定理在可靠性最优化中的应用
2
作者 刘博 谢里阳 《机械强度》 CAS CSCD 北大核心 2010年第2期238-242,共5页
建立四个串—并联冗余系统的可靠性数学模型,为每个数学模型分别建立一个线性约束,模型Ⅰ和Ⅱ是传统的串—并联冗余系统数学模型,模型Ⅲ和Ⅳ是考虑共因失效的串—并联冗余系统数学模型;应用基于泛函描述的Fenchel对偶定理,求出所建可靠... 建立四个串—并联冗余系统的可靠性数学模型,为每个数学模型分别建立一个线性约束,模型Ⅰ和Ⅱ是传统的串—并联冗余系统数学模型,模型Ⅲ和Ⅳ是考虑共因失效的串—并联冗余系统数学模型;应用基于泛函描述的Fenchel对偶定理,求出所建可靠性模型每级所用冗余数的最优值;与Sharma-Venkateswarn启发式算法进行比较。以系统可靠性分配问题为背景,将Fenchel对偶定理应用于可靠性最优化,为可靠性最优化提出一种新的数学方法,此方法可以使某些可靠性最优化问题得到简化。 展开更多
关键词 fenchel对偶定理 可靠性最优化 冗余 共因失效
下载PDF
静态多维风险度量研究 被引量:2
3
作者 刘红卫 肖彩波 胡亦钧 《数学物理学报(A辑)》 CSCD 北大核心 2019年第2期393-401,共9页
该文建立了多维框架下的静态风险度量,介绍了多维币值风险度量和可接受集概念,讨论了多维风险度量与可接受集之间的关系,最后给出了静态多维风险度量的表示定理,并给出了多维风险度量的一些性质.
关键词 多维风险度量 可接受集 fenchel-Moreau定理 表示定理
下载PDF
基于可接受集的多维风险度量
4
作者 刘红卫 曾宪福 胡亦均 《高校应用数学学报(A辑)》 北大核心 2020年第1期1-10,共10页
在多维框架下提出了基于可接受集的两种风险度量概念,讨论了一些相应的性质,给出了这两种风险度量在满足一定条件下的表示定理.最后给出了几个实例.
关键词 可接受集 风险度量 fenchel-Moreau定理 表示定理
下载PDF
Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
5
作者 Yuxin GE Guofang WANG +1 位作者 Jie WU Chao XIA 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第5期1207-1237,共31页
This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically ... This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical^inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern's magic form. 展开更多
关键词 Gauss-Bonnet-Chern (GBC) mass Gauss-Bonnet curvature positive mass theorem (PMT) asymptotically hyperbolic manifold Penrose inequality Alexandrov-fenchel inequality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部