Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostati...After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.展开更多
Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerica...Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.展开更多
China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide th...China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.展开更多
Chinese meteorological satellite,Fengyun(FY) Satellite,has a polar-orbiting series and a geostationary series.Up to now,5 polar-orbiting(FY-1A/B/C/D and FY-3A) and 5 geostationary(FY-2A/B/C/D/E) satellites were launch...Chinese meteorological satellite,Fengyun(FY) Satellite,has a polar-orbiting series and a geostationary series.Up to now,5 polar-orbiting(FY-1A/B/C/D and FY-3A) and 5 geostationary(FY-2A/B/C/D/E) satellites were launched.FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology,environment,disaster,space weather and so and.The FY data sharing system,FengyunCast,is now one of the three components of global meteorological satellite information dissemination system,GEONETCast.The first satellite of the new generation polar-orbiting series,FY-3A,was launched on 27 May,2008,demonstrating the FY polar-orbiting satellite and its application completed a great leap to realize threedimensional observations and quantitative application.The first of the next generation geostationary series(FY-4) is planned to launch in 2014.展开更多
China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to ...China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.展开更多
FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series wa...FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.展开更多
China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order t...China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.展开更多
Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,whic...Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,which are prone to such hazards yet sparsely gauged.Here,we evaluated precipitation estimated from the Chinese Fengyun-4A meteorological satellite(FY-4A AGRI)versus the Integrated Multi-satellitE Retrievals for GPM(IMERG),by using rain gauge data collected in the Parlung Zangbo Basin from May through September in both 2018 and 2019.Our results showed that(1)FY-4A AGRI generated smaller values of RMSE(root mean square error)on hourly to daily scales,and larger correlation coefficients(R-values)and smaller RMSE values for both moderate and heavy rain,indicating its greater accuracy at rainfall estimation,which is most likely due to the denser rain gauge network at a finer temporal scale used when calibrating FY-4A AGRI;(2)Both satellite products underestimated the volume of moderate and heavy rain,with the larger degree of underestimation by FY-4A AGRI,which could lower their performance in flood monitoring and forecasting;(3)Worse performance and greater inconsistency between the two products were observed in high-elevation areas,perhaps because of orographic cloud effects in these mountainous areas;and(4)Both products revealed that the Gangrigabu Range blocked incoming water vapor from the southwest monsoon,with a better representation of the spatial pattern and spatial variability produced by IMERG.To improve precipitation estimation,the effects of complex terrain should be explicitly incorporated into the retrieval algorithms,with more gauged observations in a denser network and at a finer temporal scale needed to robustly calibrate the satellite-based estimates.展开更多
Fengyun(FY) Satellite has a polar-orbiting series and a geostationary series.Up to now,7 polar-orbiting(FY-1A/B/C/D and FY-3A/B/C) and 7 geostationary(FY-2A/B/C/D/E/F/G)satellites were launched.FY data has been being ...Fengyun(FY) Satellite has a polar-orbiting series and a geostationary series.Up to now,7 polar-orbiting(FY-1A/B/C/D and FY-3A/B/C) and 7 geostationary(FY-2A/B/C/D/E/F/G)satellites were launched.FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology,environment,disaster and so on.展开更多
Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(...Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.展开更多
This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels...This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.展开更多
On September 25,the on-orbit delivery ceremony for China’s new generation geostationary meteorological satellite FY-4 was held in Beijing.China Aerospace Science and Technology Corporation(CASC),the manufacturer of...On September 25,the on-orbit delivery ceremony for China’s new generation geostationary meteorological satellite FY-4 was held in Beijing.China Aerospace Science and Technology Corporation(CASC),the manufacturer of the satellite officially delivered FY-4 to the customer,the China Meteorological Administration(CMA)for operation.展开更多
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金Supported by the National Key Research&Development Program of China(2018YFB0504900,2018YFB0504901,2018YFB0504905)
文摘After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.
基金This work was supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905).
文摘Following the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)。
文摘China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.
文摘Chinese meteorological satellite,Fengyun(FY) Satellite,has a polar-orbiting series and a geostationary series.Up to now,5 polar-orbiting(FY-1A/B/C/D and FY-3A) and 5 geostationary(FY-2A/B/C/D/E) satellites were launched.FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology,environment,disaster,space weather and so and.The FY data sharing system,FengyunCast,is now one of the three components of global meteorological satellite information dissemination system,GEONETCast.The first satellite of the new generation polar-orbiting series,FY-3A,was launched on 27 May,2008,demonstrating the FY polar-orbiting satellite and its application completed a great leap to realize threedimensional observations and quantitative application.The first of the next generation geostationary series(FY-4) is planned to launch in 2014.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)the National Project on Fengyun Meteorological Satellite Development。
文摘China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.
文摘FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.
基金EXPO special Project(10dz0581300)Natural Science Fund from Science and Technology Commission of Shanghai Municipality(09ZR1428700)National Department(Meteorology)Public Benefit Research Foundation(GYHY200906002)
文摘China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.
基金funded by the Science&Technology Department of Sichuan Province,China(Grant No.2020YFS0356)the Natural Science Foundation of China(Grants No.42201520)the National Cryosphere Desert Data Center(Grants No.E01Z790201)。
文摘Satellite-based precipitation observations with high spatiotemporal resolution are essential for studying rainfall-induced natural hazards,especially in alpine and canyon areas of the southeastern Tibetan Plateau,which are prone to such hazards yet sparsely gauged.Here,we evaluated precipitation estimated from the Chinese Fengyun-4A meteorological satellite(FY-4A AGRI)versus the Integrated Multi-satellitE Retrievals for GPM(IMERG),by using rain gauge data collected in the Parlung Zangbo Basin from May through September in both 2018 and 2019.Our results showed that(1)FY-4A AGRI generated smaller values of RMSE(root mean square error)on hourly to daily scales,and larger correlation coefficients(R-values)and smaller RMSE values for both moderate and heavy rain,indicating its greater accuracy at rainfall estimation,which is most likely due to the denser rain gauge network at a finer temporal scale used when calibrating FY-4A AGRI;(2)Both satellite products underestimated the volume of moderate and heavy rain,with the larger degree of underestimation by FY-4A AGRI,which could lower their performance in flood monitoring and forecasting;(3)Worse performance and greater inconsistency between the two products were observed in high-elevation areas,perhaps because of orographic cloud effects in these mountainous areas;and(4)Both products revealed that the Gangrigabu Range blocked incoming water vapor from the southwest monsoon,with a better representation of the spatial pattern and spatial variability produced by IMERG.To improve precipitation estimation,the effects of complex terrain should be explicitly incorporated into the retrieval algorithms,with more gauged observations in a denser network and at a finer temporal scale needed to robustly calibrate the satellite-based estimates.
文摘Fengyun(FY) Satellite has a polar-orbiting series and a geostationary series.Up to now,7 polar-orbiting(FY-1A/B/C/D and FY-3A/B/C) and 7 geostationary(FY-2A/B/C/D/E/F/G)satellites were launched.FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology,environment,disaster and so on.
基金Supported by Guizhou Provincial Science and Technology Fund Project(QIANKEHEJICHU-ZK[2022]GENERAL245)。
文摘Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.
文摘This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.
文摘On September 25,the on-orbit delivery ceremony for China’s new generation geostationary meteorological satellite FY-4 was held in Beijing.China Aerospace Science and Technology Corporation(CASC),the manufacturer of the satellite officially delivered FY-4 to the customer,the China Meteorological Administration(CMA)for operation.