Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
净初级生产力(Net Primary Productivity,NPP)不仅是估算生态系统固碳释氧、衡量陆地碳循环的主要参数,也是评价生态系统健康状况的主要指标。针对目前国产卫星对草地净初级生产力遥感监测应用较少的情况,本文基于FY-3D/MERSI2资料构建...净初级生产力(Net Primary Productivity,NPP)不仅是估算生态系统固碳释氧、衡量陆地碳循环的主要参数,也是评价生态系统健康状况的主要指标。针对目前国产卫星对草地净初级生产力遥感监测应用较少的情况,本文基于FY-3D/MERSI2资料构建一套内蒙古草地净初级生产力反演模型,结合光能利用率模型与生态过程模型,以遥感数据产品和中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)资料为驱动,通过较严格的云检测算法得到晴空条件下内蒙古草地NPP。研究中引入分辨率较高的格点化气象数据,提升了反演结果的精细化程度;同时还基于观测数据及MODIS产品构建了内蒙古草地生育期不同月份(5—8月)地上生物量及光合有效辐射吸收比率(Fraction Photosynthetic Active Radiation Absorption Ratio,FPAR)与归一化植被指数(Normalized Differ⁃ence Vegetation Index,NDVI)的多种关系模型,基于FY-3D数据直接估算叶面积指数(Leaf Area Index,LAI)及FPAR等过程参数。将反演的关键生态过程参数与MODIS对应产品对比,发现二者具有较好相关性和空间一致性。最后利用2021年6月18个生态气象观测站牧草观测资料与估算结果进行对比验证,二者具有较好的一致性,相关系数为0.86。本研究利用FY-3D/MERSI2反演的NPP能够完整呈现内蒙古地区植被生产力的普遍状态。展开更多
Water vapor plays a key role in weather, climate and environmental research on local and global scales. Knowledge about atmospheric water vapor and its spatiotemporal variability is essential for climate and weather r...Water vapor plays a key role in weather, climate and environmental research on local and global scales. Knowledge about atmospheric water vapor and its spatiotemporal variability is essential for climate and weather research. Because of the advantage of a unique temporal and spatial resolution, satellite observations provide global or regional water vapor distributions. The advanced Medium Resolution Spectral Imager (MERSI) instrument-that is, MERSI-II-onboard the Fengyun-3D (FY-3D) meteorological satellite, has been one of the major satellite sensors routinely providing precipitable water vapor (PWV) products to the community using near-infrared (NIR) measurements since June 2018. In this paper, the major updates related to the production of the NIR PWV products of MERSI-II are discussed for the first time. In addition, the water vapor retrieval algorithm based on the MERSI-II NIR channels is introduced and derivations are made over clear land areas, clouds, and sun-glint areas over the ocean. Finally, the status and samples of the MERSI-II PWV products are presented. The accuracy of MERSI-II PWV products is validated using ground-based GPS measurements. The results show that the accuracies of the water vapor products based on the updated MERSI-II instrument are significantly improved compared with those of MERSI, because MERSI-II provides a better channel setting and new calibration method. The root- mean-square error and relative bias of MERSI-II PWV products are typically 1.8-5.5 mm and −3.0% to −14.3%, respectively, and thus comparable with those of other global remote sensing products of the same type.展开更多
The Microwave Humidity and Temperature Sounder(MWHTS)is the main payload of FengYun 3D(FY-3D),designed for atmospheric humidity and temperature sounding,and also for monitoring severe weather systems such as typhoons ...The Microwave Humidity and Temperature Sounder(MWHTS)is the main payload of FengYun 3D(FY-3D),designed for atmospheric humidity and temperature sounding,and also for monitoring severe weather systems such as typhoons and rainstorms which will be launched in 2016.Before the launch of MWHTS,a series of experiments will be conducted in normal environment and a thermal/vacuum(T/V)chamber to determine radiometric characteristics of each channel,which are of very importance before the launch.In this paper,design and component description,as well as technical specifications and test results for RF and IF,will be provided.Then T/V calibration results,such as bandwidth correction,nonlinear error,calibration accuracy and sensitivity for all channels.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
文摘净初级生产力(Net Primary Productivity,NPP)不仅是估算生态系统固碳释氧、衡量陆地碳循环的主要参数,也是评价生态系统健康状况的主要指标。针对目前国产卫星对草地净初级生产力遥感监测应用较少的情况,本文基于FY-3D/MERSI2资料构建一套内蒙古草地净初级生产力反演模型,结合光能利用率模型与生态过程模型,以遥感数据产品和中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)资料为驱动,通过较严格的云检测算法得到晴空条件下内蒙古草地NPP。研究中引入分辨率较高的格点化气象数据,提升了反演结果的精细化程度;同时还基于观测数据及MODIS产品构建了内蒙古草地生育期不同月份(5—8月)地上生物量及光合有效辐射吸收比率(Fraction Photosynthetic Active Radiation Absorption Ratio,FPAR)与归一化植被指数(Normalized Differ⁃ence Vegetation Index,NDVI)的多种关系模型,基于FY-3D数据直接估算叶面积指数(Leaf Area Index,LAI)及FPAR等过程参数。将反演的关键生态过程参数与MODIS对应产品对比,发现二者具有较好相关性和空间一致性。最后利用2021年6月18个生态气象观测站牧草观测资料与估算结果进行对比验证,二者具有较好的一致性,相关系数为0.86。本研究利用FY-3D/MERSI2反演的NPP能够完整呈现内蒙古地区植被生产力的普遍状态。
文摘目前还没有基于国产卫星的1 km分辨率的全天候陆表温度(LST)产品,FY-3D卫星提供了中分辨率成像仪(MERSI)Ⅱ型1 km分辨率晴空LST产品与微波成像仪(MWRI)25 km全天候LST产品,因此可结合两者优势开展全天候1 km分辨率LST的融合研究。基于地理加权回归(GWR)方法,选择海拔、FY-3D归一化植被指数和归一化建筑指数等建立GWR模型对FY-3D/MWRI 25 km LST降尺度到1 km,并与MERSI 1 km LST进行融合;同时针对MWRI轨道间隙,利用前后1天融合后的云覆盖像元1 km LST进行补值,可以得到接近全天候下的1 km LST。基于以上融合算法,选择了中国区域多个典型日期FY-3D/MERSI和MWRI LST官网产品进行了融合试验,并利用公开发布的全天候1 km LST产品(TPDC LST)对FY-3D 1 km LST融合结果进行了评估。研究结果表明,基于GWR法的LST降尺度方法,可以有效避免传统微波LST降尺度方法中存在的“斑块”效应和局地温度偏低等问题;LST融合结果有值率从融合前的22.4%~36.9%可提高到融合后69.3%~80.7%,融合结果与TPDC LST的空间决定系数为0.503~0.787,均方根误差为3.6~5.8 K,其中晴空为2.6~4.9 K,云下为4.1~6.1 K;分析还表明目前官网产品FY-3D/MERSI和MWRI LST均存在缺值较多与精度偏低等问题,显示其存在较大改进潜力,这有利于进一步改进FY-3D LST融合质量。
基金This research was funded by the National Key R&D Program of China(Grant Nos.2018YFB 0504900,2018YFB0504901,and 2018YFB0504802)the National Natural Science Foundation of China(Grant Nos.41871249 and 41675036).
文摘Water vapor plays a key role in weather, climate and environmental research on local and global scales. Knowledge about atmospheric water vapor and its spatiotemporal variability is essential for climate and weather research. Because of the advantage of a unique temporal and spatial resolution, satellite observations provide global or regional water vapor distributions. The advanced Medium Resolution Spectral Imager (MERSI) instrument-that is, MERSI-II-onboard the Fengyun-3D (FY-3D) meteorological satellite, has been one of the major satellite sensors routinely providing precipitable water vapor (PWV) products to the community using near-infrared (NIR) measurements since June 2018. In this paper, the major updates related to the production of the NIR PWV products of MERSI-II are discussed for the first time. In addition, the water vapor retrieval algorithm based on the MERSI-II NIR channels is introduced and derivations are made over clear land areas, clouds, and sun-glint areas over the ocean. Finally, the status and samples of the MERSI-II PWV products are presented. The accuracy of MERSI-II PWV products is validated using ground-based GPS measurements. The results show that the accuracies of the water vapor products based on the updated MERSI-II instrument are significantly improved compared with those of MERSI, because MERSI-II provides a better channel setting and new calibration method. The root- mean-square error and relative bias of MERSI-II PWV products are typically 1.8-5.5 mm and −3.0% to −14.3%, respectively, and thus comparable with those of other global remote sensing products of the same type.
文摘The Microwave Humidity and Temperature Sounder(MWHTS)is the main payload of FengYun 3D(FY-3D),designed for atmospheric humidity and temperature sounding,and also for monitoring severe weather systems such as typhoons and rainstorms which will be launched in 2016.Before the launch of MWHTS,a series of experiments will be conducted in normal environment and a thermal/vacuum(T/V)chamber to determine radiometric characteristics of each channel,which are of very importance before the launch.In this paper,design and component description,as well as technical specifications and test results for RF and IF,will be provided.Then T/V calibration results,such as bandwidth correction,nonlinear error,calibration accuracy and sensitivity for all channels.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.